Enzyme catalysis

Visualization of ubiquitylation

Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

Most enzymes are made predominantly of proteins, either a single protein chain or many such chains in a multi-subunit complex. Enzymes often also incorporate non-protein components, such as metal ions or specialized organic molecules known as cofactor (e.g. adenosine triphosphate). Many cofactors are vitamins, and their role as vitamins is directly linked to their use in the catalysis of biological process within metabolism. Catalysis of biochemical reactions in the cell is vital since many but not all metabolically essential reactions have very low rates when uncatalysed. One driver of protein evolution is the optimization of such catalytic activities, although only the most crucial enzymes operate near catalytic efficiency limits, and many enzymes are far from optimal. Important factors in enzyme catalysis include general acid and base catalysis, orbital steering, entropic restriction, orientation effects (i.e. lock and key catalysis), as well as motional effects involving protein dynamics[1]

Mechanisms of enzyme catalysis vary, but are all similar in principle to other types of chemical catalysis in that the crucial factor is a reduction of energy barrier(s) separating the reactants (or substrates) from the products. The reduction of activation energy (Ea) increases the fraction of reactant molecules that can overcome this barrier and form the product. An important principle is that since they only reduce energy barriers between products and reactants, enzymes always catalyze reactions in both directions, and cannot drive a reaction forward or affect the equilibrium position – only the speed with which is it achieved. As with other catalysts, the enzyme is not consumed or changed by the reaction (as a substrate is) but is recycled such that a single enzyme performs many rounds of catalysis.

Enzymes are often highly specific and act on only certain substrates. Some enzymes are absolutely specific meaning that they act on only one substrate, while others show group specificity and can act on similar but not identical chemical groups such as the peptide bond in different molecules. Many enzymes have stereochemical specificity and act on one stereoisomer but not another.[2]

  1. ^ Kamerlin SC, Warshel A (May 2010). "At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?". Proteins. 78 (6): 1339–1375. doi:10.1002/prot.22654. PMC 2841229. PMID 20099310.
  2. ^ Laidler KJ (1978). Physical Chemistry with Biological Applications. Benjamin/Cummings. p. 427. ISBN 978-0-8053-5680-9.

Developed by StudentB