Euler's identity

In mathematics, Euler's identity[note 1] (also known as Euler's equation) is the equality where

is Euler's number, the base of natural logarithms,
is the imaginary unit, which by definition satisfies , and
is pi, the ratio of the circumference of a circle to its diameter.

Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for . Euler's identity is considered to be an exemplar of mathematical beauty as it shows a profound connection between the most fundamental numbers in mathematics. In addition, it is directly used in a proof[3][4] that π is transcendental, which implies the impossibility of squaring the circle.

  1. ^ Dunham, 1999, p. xxiv.
  2. ^ Stepanov, S.A. (2001) [1994], "Euler identity", Encyclopedia of Mathematics, EMS Press
  3. ^ Milla, Lorenz (2020), The Transcendence of π and the Squaring of the Circle, arXiv:2003.14035
  4. ^ Hines, Robert. "e is transcendental" (PDF). University of Colorado. Archived (PDF) from the original on 2021-06-23.


Cite error: There are <ref group=note> tags on this page, but the references will not show without a {{reflist|group=note}} template (see the help page).


Developed by StudentB