This article includes a list of general references, but it lacks sufficient corresponding inline citations. (January 2024) |
A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematics portal |
An expanding approvals rule (EAR) is a rule for multi-winner elections, which allows agents to express weak ordinal preferences (i.e., ranking with indifferences), and guarantees a form of proportional representation called proportionality for solid coalitions. The family of EAR was presented by Aziz and Lee.[1][2]
In general, the EAR algorithm works as follows. Let n denote the number of voters, and k the number of seats to be filled. Initially, each voter is given 1 unit of virtual money. Groups of voters can use their virtual money to "buy" candidates, where the "price" of each candidate is (though the divisor can be slightly different; see highest averages method). The EAR goes rank by rank, starting at rank 1 which corresponds to the top candidates of the voters, and increasing the rank in each iteration. (This is where the term "expanding approvals" comes from: as the rank increases, the number of approved candidates expands.) For each rank r: