Fall prevention

Fall prevention includes any action taken to help reduce the number of accidental falls suffered by susceptible individuals, such as the elderly (idiopathic) and people with neurological (Parkinson's, Multiple sclerosis, stroke survivors, Guillain-Barre, traumatic brain injury, incomplete spinal cord injury) or orthopedic (lower limb or spinal column fractures or arthritis, post-surgery, joint replacement, lower limb amputation, soft tissue injuries) indications.

Adults aged 65 years and older have a 30% chance of falling each year, making fall-related injuries the leading cause of accident-related death for this demographic.[1] Current approaches to fall prevention are problematic because even though awareness is high among professionals that work with seniors and fall prevention activities are pervasive among community living establishments,[2] fall death rates among older adults have more than doubled.[3] The challenges are believed to be three-fold. First, insufficient evidence exists that any fall risk screening instrument is adequate for predicting falls.[4] While the strongest predictors of fall risk tend to include a history of falls during the past year, gait, and balance abnormalities,[5] existing models show a strong bias and therefore mostly fail to differentiate between adults that are at low risk and high risk of falling.[6][7]

Second, current fall prevention interventions in the United States are limited between short-term individualized therapy provided by a high-cost physical therapist or longer-term wellness activity provided in a low-cost group setting. Neither arrangement is optimum in preventing falls over a large population,[8] especially as these evidence-based physical exercise programs have limited effectiveness[9] (approximately 25%). Even multifactorial interventions,[10] which include extensive physical exercise, medication adjustment, and environmental modification only lower fall risk by 31% after 12 months,[11] and by 21% after 24 months.[1] Questions around effectiveness of current approaches (physical exercise and multifactorial interventions) have been found in multiple settings, including long-term care facilities and hospitals.[12]

The final challenge is adherence. Average adherence in group-based fall prevention exercise programs is around 66%, mostly due to the highly repetitive nature of the programs and the extremely long duration required for noticeable benefits accrue.[13] Adherence to physical therapy can be even lower.[14] When adherence is below 70%, effectiveness of fall prevention physical exercise programs can drop to less than 10%.[13]

Practitioners are aware that the most successful approach to fall prevention utilizes a multimodal, motor-cognitive training approach[15] that could be introduced to all adults over 65. The scientific basis of this approach is an understanding of how the dual-task paradigm induces neuroplasticity in the brain, especially in aging populations.[16] This is driving a growing body of research that specifically links the cognitive sub-domains of attention and executive function (EF) to gait alterations and fall risk.[17][18][19][20][21]

  1. ^ a b Finnegan, Susanne; Seers, Kate; Bruce, Julie (June 2019). "Long-term follow-up of exercise interventions aimed at preventing falls in older people living in the community: a systematic review and meta-analysis". Physiotherapy. 105 (2): 187–199. doi:10.1016/j.physio.2018.09.002. PMID 30846193.
  2. ^ Harris-Kojetin, L; Sengupta, M (2018-11-11). "Falls Among Assisted Living Residents: Results from the 2016 National Study of Long-Term Care Providers". Innovation in Aging. 2 (Suppl 1): 766. doi:10.1093/geroni/igy023.2833. ISSN 2399-5300. PMC 6228283.
  3. ^ "Important Facts about Falls | Home and Recreational Safety | CDC Injury Center". www.cdc.gov. 2019-02-01. Retrieved 2021-12-02.
  4. ^ Gates, Simon; Smith, Lesley A.; Fisher, Joanne D.; Lamb, Sarah E. (2008). "Systematic review of accuracy of screening instruments for predicting fall risk among independently living older adults". Journal of Rehabilitation Research and Development. 45 (8): 1105–1116. doi:10.1682/JRRD.2008.04.0057 (inactive 1 November 2024). ISSN 1938-1352. PMID 19235113.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  5. ^ Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ (January 2007). "Will my patient fall?". JAMA. 297 (1): 77–86. doi:10.1001/jama.297.1.77. PMID 17200478.
  6. ^ Park, Seong-Hi (January 2018). "Tools for assessing fall risk in the elderly: a systematic review and meta-analysis". Aging Clinical and Experimental Research. 30 (1): 1–16. doi:10.1007/s40520-017-0749-0. ISSN 1720-8319. PMID 28374345. S2CID 24579938.
  7. ^ Gade, Gustav Valentin; Jørgensen, Martin Grønbech; Ryg, Jesper; Riis, Johannes; Thomsen, Katja; Masud, Tahir; Andersen, Stig (2021-05-04). "Predicting falls in community-dwelling older adults: a systematic review of prognostic models". BMJ Open. 11 (5): e044170. doi:10.1136/bmjopen-2020-044170. ISSN 2044-6055. PMC 8098967. PMID 33947733.
  8. ^ Gillespie, LD; Gillespie, WJ; Robertson, MC; Lamb, SE; Cumming, RG; Rowe, BH (December 2003). "Interventions for preventing falls in elderly people". Physiotherapy. 89 (12): 692–693. doi:10.1016/s0031-9406(05)60487-7. ISSN 0031-9406.
  9. ^ Sherrington, Catherine; Fairhall, Nicola; Kwok, Wing; Wallbank, Geraldine; Tiedemann, Anne; Michaleff, Zoe A.; Ng, Christopher A. C. M.; Bauman, Adrian (2020-11-26). "Evidence on physical activity and falls prevention for people aged 65+ years: systematic review to inform the WHO guidelines on physical activity and sedentary behaviour". The International Journal of Behavioral Nutrition and Physical Activity. 17 (1): 144. doi:10.1186/s12966-020-01041-3. ISSN 1479-5868. PMC 7689963. PMID 33239019.
  10. ^ Mahoney, Jane E. (2010-07-12). "Why Multifactorial Fall-Prevention Interventions May Not Work". Archives of Internal Medicine. 170 (13): 1117–1119. doi:10.1001/archinternmed.2010.193. ISSN 0003-9926. PMID 20625016.
  11. ^ Tinetti, Mary E.; Baker, Dorothy I.; McAvay, Gail; Claus, Elizabeth B.; Garrett, Patricia; Gottschalk, Margaret; Koch, Marie L.; Trainor, Kathryn; Horwitz, Ralph I. (1994-09-29). "A Multifactorial Intervention to Reduce the Risk of Falling among Elderly People Living in the Community". New England Journal of Medicine. 331 (13): 821–827. doi:10.1056/NEJM199409293311301. ISSN 0028-4793. PMID 8078528.
  12. ^ Cameron ID, Dyer SM, Panagoda CE, Murray GR, Hill KD, Cumming RG, Kerse N (September 2018). "Interventions for preventing falls in older people in care facilities and hospitals". The Cochrane Database of Systematic Reviews. 9 (9): CD005465. doi:10.1002/14651858.CD005465.pub4. PMC 6148705. PMID 30191554.
  13. ^ a b Osho, Oluwaseyi; Owoeye, Oluwatoyosi; Armijo-Olivo, Susan (2018-04-01). "Adherence and Attrition in Fall Prevention Exercise Programs for Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis". Journal of Aging and Physical Activity. 26 (2): 304–326. doi:10.1123/japa.2016-0326. ISSN 1543-267X. PMID 28771111.
  14. ^ R, Salazar (2019). "2019 Survey Results: Outpatient PT & OT Clinicians & Clinic Owners". Retrieved June 2, 2020.
  15. ^ Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. (September 2016). "Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial" (PDF). Lancet. 388 (10050): 1170–82. doi:10.1016/S0140-6736(16)31325-3. PMID 27524393. S2CID 15303981. Archived from the original (PDF) on 2021-07-14. Retrieved 2021-07-14.
  16. ^ Raichlen DA, Alexander GE (2023). "Why Your Brain Needs Exercise". Scientific American. 322 (1): 26. doi:10.1038/scientificamerican0120-26. PMID 39014823.
  17. ^ Hausdorff, Jeffrey M.; Doniger, Glen M.; Springer, Shmuel; Yogev, Galit; Simon, Ely S.; Giladi, Nir (December 2006). "A Common Cognitive Profile in Elderly Fallers and in Patients with Parkinson's Disease: The Prominence of Impaired Executive Function and Attention". Experimental Aging Research. 32 (4): 411–429. doi:10.1080/03610730600875817. ISSN 0361-073X. PMC 1868891. PMID 16982571.
  18. ^ Mayor, Susan (2016-02-04). "Parkinson's disease diagnosis is preceded by increased risk of falls, study finds". BMJ. 352: i695. doi:10.1136/bmj.i695. ISSN 1756-1833. PMID 26849893. S2CID 40522797.
  19. ^ Herman, Talia; Mirelman, Anat; Giladi, Nir; Schweiger, Avraham; Hausdorff, Jeffrey M. (2010-05-19). "Executive Control Deficits as a Prodrome to Falls in Healthy Older Adults: A Prospective Study Linking Thinking, Walking, and Falling". The Journals of Gerontology: Series A. 65A (10): 1086–1092. doi:10.1093/gerona/glq077. ISSN 1758-535X. PMC 2949331. PMID 20484336.
  20. ^ Holtzer, Roee; Friedman, Rachel; Lipton, Richard B.; Katz, Mindy; Xue, Xiaonan; Verghese, Joe (2007). "The relationship between specific cognitive functions and falls in aging". Neuropsychology. 21 (5): 540–548. doi:10.1037/0894-4105.21.5.540. ISSN 1931-1559. PMC 3476056. PMID 17784802.
  21. ^ Springer, Shmuel; Giladi, Nir; Peretz, Chava; Yogev, Galit; Simon, Ely S.; Hausdorff, Jeffrey M. (2006-03-15). "Dual-tasking effects on gait variability: The role of aging, falls, and executive function". Movement Disorders. 21 (7): 950–957. doi:10.1002/mds.20848. ISSN 0885-3185. PMID 16541455. S2CID 34812135.

Developed by StudentB