Fast radio burst

Lorimer Burst – Observation of the first detected fast radio burst as described by Lorimer in 2006.[1][failed verification]

In radio astronomy, a fast radio burst (FRB) is a transient radio pulse of length ranging from a fraction of a millisecond, for an ultra-fast radio burst,[2][3] to 3 seconds,[4] caused by some high-energy astrophysical process not yet understood. Astronomers estimate the average FRB releases as much energy in a millisecond as the Sun puts out in three days.[5] While extremely energetic at their source, the strength of the signal reaching Earth has been described as 1,000 times less than from a mobile phone on the Moon.[6]

The first FRB was discovered by Duncan Lorimer and his student David Narkevic in 2007 when they were looking through archival pulsar survey data, and it is therefore commonly referred to as the Lorimer Burst.[7][8] Many FRBs have since been recorded, including several that have been detected to repeat in seemingly irregular ways.[9][10][11][12][13] Only one FRB has been detected to repeat in a regular way: FRB 180916 seems to pulse every 16.35 days.[14][15]

Most FRBs are extragalactic, but the first Milky Way FRB was detected by the CHIME radio telescope in April 2020.[16] In June 2021, astronomers reported over 500 FRBs from outer space detected in one year.[17]

When the FRBs are polarized, it indicates that they are emitted from a source contained within an extremely powerful magnetic field.[18] The exact origin and cause of the FRBs is still the subject of investigation; proposals for their origin range from a rapidly rotating neutron star and a black hole, to extraterrestrial intelligence.[19][20] In 2020, astronomers reported narrowing down a source of fast radio bursts, which may now plausibly include "compact-object mergers and magnetars arising from normal core collapse supernovae".[21][22][23] A neutron star has been proposed as the origin of an unusual FRB with periodic peaks lasting over 3 seconds reported in 2022.[24]

The discovery in 2012 of the first repeating source, FRB 121102, and its localization and characterization in 2017, has improved the understanding of the source class. FRB 121102 is identified with a galaxy at a distance of approximately three billion light-years and is embedded in an extreme environment.[25][18] The first host galaxy identified for a non-repeating burst, FRB 180924, was identified in 2019 and is a much larger and more ordinary galaxy, nearly the size of the Milky Way. In August 2019, astronomers reported the detection of eight more repeating FRB signals.[26][27] In January 2020, astronomers reported the precise location of a second repeating burst, FRB 180916.[28][29] One FRB seems to have been in the same location as a known gamma-ray burst.[30][16]

On 28 April 2020, a pair of millisecond-timescale bursts (FRB 200428) consistent with observed fast radio bursts, with a fluence of >1.5 million Jy ms, was detected from the same area of sky as the magnetar SGR 1935+2154.[31][32] Although it was thousands of times less intrinsically bright than previously observed fast radio bursts, its comparative proximity rendered it the most powerful fast radio burst yet observed, reaching a peak flux of either a few thousand or several hundred thousand janskys, comparable to the brightness of the radio sources Cassiopeia A and Cygnus A at the same frequencies. This established magnetars as, at least, one ultimate source of fast radio bursts,[33][34][35] although the exact cause remains unknown.[36][37][38] Further studies support the notion that magnetars may be closely associated with FRBs.[39][40] On 13 October 2021, astronomers reported the detection of hundreds of FRBs from a single system.[41][42]

In 2024, an international team led by astrophysicists of INAF, using detections from VLA, NOEMA interferometer, and Gran Telescopio Canarias has conducted a research campaign about FRB20201124A, one of the two known persistent FRB, located about 1.3 billion light-years away. Based on the outcomes of the study, authors deem to confirm the origin of FRBs in a binary system at high accretion rate, that would blow a plasma bubble, responsible for the persistent radio emission. The emission object, i.e. the "bubble", would be immersed in a star-forming region.[43]

  1. ^ Cite error: The named reference Lorimer2007B was invoked but never defined (see the help page).
  2. ^ Tognetti, Laurence (22 October 2023). "Now Astronomers have Discovered "Ultra-Fast Radio Bursts" Lasting Millionths of a Second". Universe Today. Archived from the original on 23 October 2023. Retrieved 23 October 2023.
  3. ^ Snelders, M.P.; et al. (19 October 2023). "Detection of ultra-fast radio bursts from FRB 20121102A". Nature Astronomy. 7 (12): 1486–1496. arXiv:2307.02303. Bibcode:2023NatAs...7.1486S. doi:10.1038/s41550-023-02101-x. Archived from the original on 23 October 2023. Retrieved 23 October 2023.
  4. ^ "Astronomers detect a radio "heartbeat" billions of light-years from Earth". 13 July 2022.
  5. ^ Petroff, E.; Hessels, J. W. T.; Lorimer, D. R. (2019-05-24). "Fast radio bursts". The Astronomy and Astrophysics Review. 27 (1): 4. arXiv:1904.07947. Bibcode:2019A&ARv..27....4P. doi:10.1007/s00159-019-0116-6. ISSN 1432-0754. S2CID 174799415. With peak flux densities of approximately 1 Jy, this implied an isotropic energy of 10^32 J (10^39 erg) in a few milliseconds
  6. ^ Cite error: The named reference SciAm2013 was invoked but never defined (see the help page).
  7. ^ Mann, Adam (28 March 2017). "Core Concept: Unraveling the enigma of fast radio bursts". Proc Natl Acad Sci U S A. 114 (13): 3269–3271. Bibcode:2017PNAS..114.3269M. doi:10.1073/pnas.1703512114. PMC 5380068. PMID 28351957.
  8. ^ "Are Mysterious Fast Radio Bursts Coming From the Collapse of Strange Star Crusts?". Universe Today. May 17, 2018.
  9. ^ Cite error: The named reference NWSWK-20170830 was invoked but never defined (see the help page).
  10. ^ Overbye, Dennis (10 January 2018). "Magnetic Secrets of Mysterious Radio Bursts in a Faraway Galaxy". The New York Times. Retrieved 11 January 2018.
  11. ^ Cite error: The named reference NAT-20190109 was invoked but never defined (see the help page).
  12. ^ Cite error: The named reference AT-20190629 was invoked but never defined (see the help page).
  13. ^ Cite error: The named reference CNET-20190630 was invoked but never defined (see the help page).
  14. ^ Cite error: The named reference ARX-20200203 was invoked but never defined (see the help page).
  15. ^ Cite error: The named reference repeat frb was invoked but never defined (see the help page).
  16. ^ a b Leah Crane (May 9, 2020). "Weird radio signals spotted in our galaxy could solve a space mystery". New Scientist.
  17. ^ Chu, Jennifer (9 June 2021). "CHIME Telescope Detects More Than 500 Mysterious Fast Radio Bursts From Outer Space". SciTechDaily. Retrieved 10 June 2021.
  18. ^ a b Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; et al. (11 January 2018). "An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102". Nature. 553 (7687): 182–185. arXiv:1801.03965. Bibcode:2018Natur.553..182M. doi:10.1038/nature25149. ISSN 0028-0836. PMID 29323297. S2CID 205262986.
  19. ^ Devlin, Hannah (10 January 2018). "Astronomers may be closing in on source of mysterious fast radio bursts". The Guardian.
  20. ^ Strickland, Ashley (January 10, 2018). "What's sending mysterious repeating fast radio bursts in space?". CNN.
  21. ^ Starr, Michelle (1 June 2020). "Astronomers Just Narrowed Down The Source of Those Powerful Radio Signals From Space". ScienceAlert.com. Retrieved 2 June 2020.
  22. ^ Carter, Jamie (3 June 2020). "Four 'Mysterious Signals From Outer Space' Are Coming From Galaxies Like Ours, Say Scientists". Forbes. Retrieved 4 June 2020.
  23. ^ Bhandan, Shivani (1 June 2020). "The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder". The Astrophysical Journal Letters. 895 (2): L37. arXiv:2005.13160. Bibcode:2020ApJ...895L..37B. doi:10.3847/2041-8213/ab672e. S2CID 218900539.
  24. ^ Cite error: The named reference nature july 22 was invoked but never defined (see the help page).
  25. ^ Chatterjee, S.; Law, C. J.; Wharton, R. S.; Burke-Spolaor, S.; Hessels, J. W. T.; Bower, G. C.; Cordes, J. M.; Tendulkar, S. P.; Bassa, C. G. (January 2017). "A direct localization of a fast radio burst and its host". Nature. 541 (7635): 58–61. arXiv:1701.01098. Bibcode:2017Natur.541...58C. doi:10.1038/nature20797. ISSN 1476-4687. PMID 28054614. S2CID 205252913.
  26. ^ Cite error: The named reference SA-20190814 was invoked but never defined (see the help page).
  27. ^ Cite error: The named reference ARX-20190809 was invoked but never defined (see the help page).
  28. ^ West Virginia University (6 January 2020). "In a nearby galaxy, a fast radio burst unravels more questions than answers". EurekAlert!. Retrieved 6 January 2020.
  29. ^ Balles, Matthew (6 January 2020). "Not all fast radio bursts are created equal – Astronomical signals called fast radio bursts remain enigmatic, but a key discovery has now been made. A second repeating fast radio burst has been traced to its host galaxy, and its home bears little resemblance to that of the first". Nature. 577 (7789): 176–177. doi:10.1038/d41586-019-03894-6. PMID 31907452.
  30. ^ Wang, Xiang-Gao; et al. (Apr 25, 2020). "Is GRB 110715A the progenitor of FRB 171209?". The Astrophysical Journal. 894 (2): L22. arXiv:2004.12050. Bibcode:2020ApJ...894L..22W. doi:10.3847/2041-8213/ab8d1d. S2CID 216553325.
  31. ^ Cite error: The named reference SA-20200505 was invoked but never defined (see the help page).
  32. ^ Cite error: The named reference SA-20200501 was invoked but never defined (see the help page).
  33. ^ Timmer, John (4 November 2020). "We finally know what has been making fast radio bursts - Magnetars, a type of neutron star, can produce the previously enigmatic bursts". Ars Technica. Retrieved 4 November 2020.
  34. ^ Cofield, Calla; Andreoli, Calire; Reddy, Francis (4 November 2020). "NASA Missions Help Pinpoint the Source of a Unique X-ray, Radio Burst". NASA. Retrieved 4 November 2020.
  35. ^ Andersen, B.; et al. (4 November 2020). "A bright millisecond-duration radio burst from a Galactic magnetar". Nature. 587 (7832): 54–58. arXiv:2005.10324. Bibcode:2020Natur.587...54C. doi:10.1038/s41586-020-2863-y. PMID 33149292. S2CID 218763435. Retrieved 5 November 2020.
  36. ^ Scholz, Paul. "ATel #13681: A bright millisecond-timescale radio burst from the direction of the Galactic magnetar SGR 1935+2154". ATel. Retrieved 30 April 2020.
  37. ^ Bochenek, C. "ATel #13684: Independent detection of the radio burst reported in ATel #13681 with STARE2". ATel. Retrieved 30 April 2020.
  38. ^ Hall, Shannon (11 June 2020). "A Surprise Discovery Points to the Source of Fast Radio Bursts - After a burst lit up their telescope "like a Christmas tree," astronomers were able to finally track down the source of these cosmic oddities". Quantum Magazine. Retrieved 11 June 2020.
  39. ^ University of Nevada (26 December 2020). "Astrophysicists Unveil the Mystery of Fast Radio Bursts". SciTechDaily.com. Retrieved 26 December 2020.
  40. ^ Zhang, Bing (4 November 2020). "The physical mechanisms of fast radio bursts". Nature. 587 (7832): 45–53. arXiv:2011.03500. Bibcode:2020Natur.587...45Z. doi:10.1038/s41586-020-2828-1. PMID 33149290. S2CID 226259246. Retrieved 26 December 2020.
  41. ^ Xin, Ling (13 October 2021). "FAST, the World's Largest Radio Telescope, Zooms in on a Furious Cosmic Source - China's Five-hundred-meter Aperture Spherical radio Telescope has detected more than 1,600 fast radio bursts from a single enigmatic system". Scientific American. Retrieved 13 October 2021.
  42. ^ Cite error: The named reference SAL-20211018 was invoked but never defined (see the help page).
  43. ^ Bruni, Gabriele (2024). "A nebular origin for the persistent radio emission of fast radio bursts". Nature. 632 (8027): 1014–1016. arXiv:2312.15296. Bibcode:2024Natur.632.1014B. doi:10.1038/s41586-024-07782-6. PMID 39112707.

Developed by StudentB