Fisher's exact test

Fisher's exact test is a statistical significance test used in the analysis of contingency tables.[1][2][3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.

Fisher is said to have devised the test following a comment from Muriel Bristol, who claimed to be able to detect whether the tea or the milk was added first to her cup. He tested her claim in the "lady tasting tea" experiment.[4]

  1. ^ Fisher, R. A. (1922). "On the interpretation of χ2 from contingency tables, and the calculation of P". Journal of the Royal Statistical Society. 85 (1): 87–94. doi:10.2307/2340521. JSTOR 2340521.
  2. ^ Fisher, R.A. (1954). Statistical Methods for Research Workers. Oliver and Boyd. ISBN 0-05-002170-2.
  3. ^ Agresti, Alan (1992). "A Survey of Exact Inference for Contingency Tables". Statistical Science. 7 (1): 131–153. CiteSeerX 10.1.1.296.874. doi:10.1214/ss/1177011454. JSTOR 2246001.
  4. ^ Fisher, Sir Ronald A. (1956) [The Design of Experiments (1935)]. "Mathematics of a Lady Tasting Tea". In James Roy Newman (ed.). The World of Mathematics, volume 3. Courier Dover Publications. ISBN 978-0-486-41151-4.

Developed by StudentB