Fizzle (nuclear explosion)

If two pieces of subcritical material are not brought together fast enough, nuclear predetonation (fizzle) can occur, whereby a very small explosion will blow the bulk of the material apart with much less energy released than a proper nuclear explosion.

A fizzle occurs when the detonation of a device for creating a nuclear explosion (such as a nuclear weapon) grossly fails to meet its expected yield. The bombs still detonate, but the detonation is much weaker than anticipated. The cause(s) for the failure might be linked to improper design, poor construction, or lack of expertise.[1][2] All countries that have had a nuclear weapons testing program have experienced some fizzles.[3] A fizzle can spread radioactive material throughout the surrounding area, involve a partial fission reaction of the fissile material, or both.[4] For practical purposes, a fizzle can still have considerable explosive yield when compared to conventional weapons.

In multistage fission-fusion weapons, full yield of the fission primary that fails to initiate fusion ignition in the fusion secondary (or produces only a small degree of fusion) is also considered a "fizzle", as the weapon failed to reach its design yield despite the fission primary working correctly. Such fizzles can have very high yields, as in the case of Castle Koon, where the secondary stage of a device with a 1 megaton design fizzled, but its primary still generated a yield of 100 kilotons, and even the fizzled secondary still contributed another 10 kilotons, for a total yield of 110 kT.

  1. ^ Staff Writer. "NBC Weapons: North Korean Fizzle Bomb." Strategy Page. Retrieved on 2008-05-04.
  2. ^ Earl Lane. "Nuclear Experts Assess the Threat of a "Backyard Bomb”." American Association for the Advancement of Science. Retrieved on 2008-05-04. Archived May 13, 2008, at the Wayback Machine
  3. ^ Meirion Jones." A short history of fizzles." BBC News. Retrieved on 2008-05-04.
  4. ^ Theodore E. Liolios." The Effects of Nuclear Terrorism: Fizzles." (PDF) European Program on Science and International Security. Retrieved on 2008-05-04.

Developed by StudentB