In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA).[1] Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems via biologically inspired operators such as selection, crossover, and mutation.[2] Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles,[3] hyperparameter optimization, and causal inference.[4]