Genetic history of Europe

The European genetic structure today (based on 273,464 SNPs). Three levels of structure as revealed by PC analysis are shown: A) inter-continental; B) intra-continental; and C) inside a single country (Estonia), where median values of the PC1&2 are shown. D) European map illustrating the origin of sample and population size. CEU – Utah residents with ancestry from Northern and Western Europe, CHB – Han Chinese from Beijing, JPT – Japanese from Tokyo, and YRI – Yoruba from Ibadan, Nigeria.[1]

The genetic history of Europe includes information around the formation, ethnogenesis, and other DNA-specific information about populations indigenous, or living in Europe.

European early modern human (EEMH) lineages between 40 and 26 ka (Aurignacian) were still part of a large Western Eurasian "meta-population", related to Central and Western Asian populations.[2] Divergence into genetically distinct sub-populations within Western Eurasia is a result of increased selection pressure and founder effects during the Last Glacial Maximum (LGM, Gravettian).[3]

By the end of the LGM, after 20 ka, A Western European lineage, dubbed west European hunter-gatherer (WHG) emerged from the Solutrean refugium during the European Mesolithic.[4] These mesolithic hunter-gatherer cultures are subsequently replaced in the Neolithic Revolution as a result of the arrival of Early European Farmer (EEF) lineages derived from mesolithic populations of West Asia (Anatolia and the Caucasus).[5] In the European Bronze Age, there were again substantial population replacements in parts of Europe by the intrusion of Western Steppe Herder (WSH) lineages from the Pontic–Caspian steppes, arising from admixture between Eastern Hunter Gatherers (EHG) and peoples related to Near Easterners. These Bronze Age population replacements are associated with the Bell Beaker and Corded Ware cultures archaeologically and with the Indo-European expansion linguistically.[6][7]

As a result of the population movements during the Mesolithic to Bronze Age, modern European populations are distinguished by differences in WHG, EEF and Ancient North Eurasian (ANE) ancestry.[8][9][10] Admixture rates varied geographically; in the late Neolithic, WHG ancestry in farmers in Hungary was at around 10%, in Germany around 25% and in Iberia as high as 50%.[11] The contribution of EEF is more significant in Mediterranean Europe, and declines towards northern and northeastern Europe, where WHG ancestry is stronger; the Sardinians are considered to be the closest European group to the population of the EEF.

Ethnogenesis of the modern ethnic groups of Europe in the historical period is associated with numerous admixture events, primarily those associated with the Migration period and the decline of the Roman Empire, associated with the Germanic, Norse, and Slavic expansions

Research into the genetic history of Europe became possible in the second half of the 20th century, but did not yield results with high resolution before the 1990s. In the 1990s, preliminary results became possible, but they remained mostly limited to studies of mitochondrial and Y-chromosomal lineages. Autosomal DNA became more easily accessible in the 2000s, and since the mid-2010s, results of previously unattainable resolution, many of them based on full-genome analysis of ancient DNA, have been published at an accelerated pace.[12][13]

  1. ^ Nelis M, Esko T, Mägi R, Zimprich F, Zimprich A, Toncheva D, et al. (2009). "Genetic structure of Europeans: a view from the North-East". PLOS ONE. 4 (5): e5472. Bibcode:2009PLoSO...4.5472N. doi:10.1371/journal.pone.0005472. PMC 2675054. PMID 19424496.
  2. ^ Seguin-Orlando A, Korneliussen TS, Sikora M, Malaspinas AS, Manica A, Moltke I, et al. (November 2014). "Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years". Science. 346 (6213): 1113–1118. Bibcode:2014Sci...346.1113S. doi:10.1126/science.aaa0114. PMID 25378462. S2CID 206632421.
  3. ^ Beleza S, Santos AM, McEvoy B, Alves I, Martinho C, Cameron E, et al. (January 2013). "The timing of pigmentation lightening in Europeans". Molecular Biology and Evolution. 30 (1): 24–35. doi:10.1093/molbev/mss207. PMC 3525146. PMID 22923467.
  4. ^ Jones ER, Gonzalez-Fortes G, Connell S, Siska V, Eriksson A, Martiniano R, et al. (November 2015). "Upper Palaeolithic genomes reveal deep roots of modern Eurasians". Nature Communications. 6 (1): 8912. Bibcode:2015NatCo...6.8912J. doi:10.1038/ncomms9912. PMC 4660371. PMID 26567969.
  5. ^ Population replacement in the Neolithic, and again in the Bronze Age, was nearly complete in Prehistoric Britain, the Mesolithic WHG population accounting for just about 10% of the ancestry of the modern indigenous British population. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, et al. (March 2018). "The Beaker phenomenon and the genomic transformation of northwest Europe". Nature. 555 (7695): 190–196. Bibcode:2018Natur.555..190O. doi:10.1038/nature25738. PMC 5973796. PMID 29466337.
  6. ^ Haak, Wolfgang; Lazaridis, Iosif; Patterson, Nick; Rohland, Nadin; Mallick, Swapan; Llamas, Bastien; Brandt, Guido; Nordenfelt, Susanne; Harney, Eadaoin; Stewardson, Kristin; Fu, Qiaomei; Mittnik, Alissa; Bánffy, Eszter; Economou, Christos; Francken, Michael (2015). "Massive migration from the steppe was a source for Indo-European languages in Europe". Nature. 522 (7555): 207–211. arXiv:1502.02783. Bibcode:2015Natur.522..207H. doi:10.1038/nature14317. ISSN 1476-4687. PMC 5048219. PMID 25731166.
  7. ^ Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, et al. (September 2014). "Ancient human genomes suggest three ancestral populations for present-day Europeans". Nature. 513 (7518): 409–413. arXiv:1312.6639. Bibcode:2014Natur.513..409L. doi:10.1038/nature13673. PMC 4170574. PMID 25230663.
  8. ^ Since Lazaridis et al. (2014), further studies have refined the picture of interbreeding between EEF and WHG. In a 2017 analysis of 180 ancient DNA datasets of the Chalcolithic and Neolithic periods from Hungary, Germany and Spain evidence was found of a prolonged period of EEF-WHG interbreeding. Admixture took place regionally, from local hunter-gatherer populations, so that populations from the three regions (Germany, Iberia and Hungary) were genetically distinguishable at all stages of the Neolithic period, with a gradually increasing ratio of WHG ancestry of farming populations over time. This suggests that after the initial expansion of early farmers, there were no further long-range migrations substantial enough to homogenize the farming population, and that farming and hunter-gatherer populations existed side by side for many centuries, with ongoing gradual admixture throughout the 5th to 4th millennia BCE (rather than a single admixture event on initial contact). Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, et al. (November 2017). "Parallel palaeogenomic transects reveal complex genetic history of early European farmers". Nature. 551 (7680): 368–372. Bibcode:2017Natur.551..368L. doi:10.1038/nature24476. PMC 5973800. PMID 29144465.
  9. ^ "There's no such thing as a 'pure' European—or anyone else". Science | AAAS. May 15, 2017.
  10. ^ Curry A (2019). "Genetic testing reveals that Europe is a melting pot, made of immigrants". National Geographic. Archived from the original on July 9, 2019.
  11. ^ Lipson et al. (2017), Fig 2.
  12. ^ Dutchen S (November 23, 2015). "Farming's in Their DNA". Harvard Medical School. Retrieved 25 November 2015.
  13. ^ Cite error: The named reference Fu 2016 was invoked but never defined (see the help page).

Developed by StudentB