Genomic imprinting

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed or not, depending on whether they are inherited from the female or male parent.[1][2][3][4][5] Genes can also be partially imprinted. Partial imprinting occurs when alleles from both parents are differently expressed rather than complete expression and complete suppression of one parent's allele.[6] Forms of genomic imprinting have been demonstrated in fungi, plants and animals.[7][8] In 2014, there were about 150 imprinted genes known in mice and about half that in humans.[9] As of 2019, 260 imprinted genes have been reported in mice and 228 in humans.[10]

Genomic imprinting is an inheritance process independent of the classical Mendelian inheritance.[11] It is an epigenetic process that involves DNA methylation and histone methylation without altering the genetic sequence. These epigenetic marks are established ("imprinted") in the germline (sperm or egg cells) of the parents and are maintained through mitotic cell divisions in the somatic cells of an organism.[12]

Appropriate imprinting of certain genes is important for normal development. Human diseases involving genomic imprinting include Angelman, Prader–Willi, and Beckwith–Wiedemann syndromes.[13] Methylation defects have also been associated with male infertility.[3]

  1. ^ Ferguson-Smith AC (July 2011). "Genomic imprinting: the emergence of an epigenetic paradigm". Nature Reviews. Genetics. 12 (8): 565–575. doi:10.1038/nrg3032. PMID 21765458. S2CID 23630392. Closed access icon
  2. ^ Bartolomei MS (September 2009). "Genomic imprinting: employing and avoiding epigenetic processes". Genes & Development. 23 (18): 2124–2133. doi:10.1101/gad.1841409. PMC 2751984. PMID 19759261.
  3. ^ a b Rotondo JC, Selvatici R, Di Domenico M, Marci R, Vesce F, Tognon M, Martini F (September 2013). "Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males". Epigenetics. 8 (9): 990–997. doi:10.4161/epi.25798. PMC 3883776. PMID 23975186.
  4. ^ Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB (August 2014). "The evolution of genomic imprinting: theories, predictions and empirical tests". Heredity. 113 (2): 119–128. doi:10.1038/hdy.2014.29. PMC 4105453. PMID 24755983.
  5. ^ Cite error: The named reference Reik and Walter 2001 was invoked but never defined (see the help page).
  6. ^ Morcos L, Ge B, Koka V, Lam KC, Pokholok DK, Gunderson KL, et al. (2011). "Genome-wide assessment of imprinted expression in human cells". Genome Biology. 12 (3): R25. doi:10.1186/gb-2011-12-3-r25. PMC 3129675. PMID 21418647.
  7. ^ Martienssen RA, Colot V (August 2001). "DNA methylation and epigenetic inheritance in plants and filamentous fungi". Science. 293 (5532): 1070–1074. doi:10.1126/science.293.5532.1070. PMID 11498574.
  8. ^ Feil R, Berger F (April 2007). "Convergent evolution of genomic imprinting in plants and mammals". Trends in Genetics. 23 (4): 192–199. doi:10.1016/j.tig.2007.02.004. PMID 17316885.
  9. ^ Peters J (August 2014). "The role of genomic imprinting in biology and disease: an expanding view". Nature Reviews. Genetics. 15 (8): 517–530. doi:10.1038/nrg3766. PMID 24958438. S2CID 498562.
  10. ^ Tucci V; Isles AR; Kelsey G; Ferguson-Smith AC (February 2019). "Genomic Imprinting and Physiological Processes in Mammals". Cell. 176 (5): 952–965. doi:10.1016/j.cell.2019.01.043. PMID 30794780.
  11. ^ Preston, Elizabeth (13 February 2024). "Self-Love Is Important, but We Mammals Are Stuck With Sex - Some female birds, reptiles and other animals can make a baby on their own. But for mammals like us, eggs and sperm need each other". The New York Times. Archived from the original on 13 February 2024. Retrieved 16 February 2024.
  12. ^ Cite error: The named reference Wood and Oakey 2006 was invoked but never defined (see the help page).
  13. ^ "Can you generate offspring from two eggs?". 27 December 2021.

Developed by StudentB