Great Calcite Belt

Yearly cycle of the Great Calcite Belt in the Southern Ocean. The belt appears during the southern hemisphere summer as a light teal stripe.

The Great Calcite Belt (GCB) refers to a region of the ocean where there are high concentrations of calcite, a mineral form of calcium carbonate. The belt extends over a large area of the Southern Ocean surrounding Antarctica. The calcite in the Great Calcite Belt is formed by tiny marine organisms called coccolithophores, which build their shells out of calcium carbonate. When these organisms die, their shells sink to the bottom of the ocean, and over time, they accumulate to form a thick layer of calcite sediment.

The Great Calcite Belt occurs in areas of the Southern ocean where the calcite compensation depth (CCD) is relatively shallow, meaning that calcite minerals from the shells of marine organisms dissolve at a shallower depth in the water column. This results in a higher concentration of calcium carbonate sediments in the ocean floor, which can be observed in the form of white chalky sediments.

The Great Calcite Belt plays a significant role regulating the global carbon cycle. Calcite is a form of carbon that is removed from the atmosphere and stored in the ocean, which helps to reduce the amount of carbon dioxide in the atmosphere and mitigate the effects of climate change. Recent studies suggest the belt sequesters something between 15 and 30 million tonnes of carbon per year.[1]

Scientists have further interest in the calcite sediments in the belt, which contain valuable information about past climate, ocean currents, ocean chemistry, and marine ecosystems. For example, variations in the CCD depth over time can indicate changes in the amount of carbon dioxide in the atmosphere and the ocean's ability to absorb it. The belt is also home to a diverse range of contemporary marine life, including deep-sea corals and fish that are adapted to the unique conditions found in this part of the ocean. The Great Calcite Belt is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups.[2]

  1. ^ Anderson, Robert F.; Sachs, Julian P.; Fleisher, Martin Q.; Allen, Katherine A.; Yu, Jimin; Koutavas, Athanasios; Jaccard, Samuel L. (2019). "Deep‐Sea Oxygen Depletion and Ocean Carbon Sequestration During the Last Ice Age". Global Biogeochemical Cycles. 33 (3). American Geophysical Union (AGU): 301–317. Bibcode:2019GBioC..33..301A. doi:10.1029/2018gb006049. hdl:1885/196693. ISSN 0886-6236. S2CID 134926685.
  2. ^ Cite error: The named reference Smith2017 was invoked but never defined (see the help page).

Developed by StudentB