Green Revolution

After World War II, newly implemented agricultural technologies, including pesticides and fertilizers as well as new breeds of high yield crops, greatly increased food production in certain regions of the Global South.

The Green Revolution, or the Third Agricultural Revolution, was a period of technology transfer initiatives that saw greatly increased crop yields.[1][2] These changes in agriculture began in developed countries in the early 20th century and spread globally until the late 1980s.[3] In the late 1960s, farmers began incorporating new technologies such as high-yielding varieties of cereals, particularly dwarf wheat and rice, and the widespread use of chemical fertilizers (to produce their high yields, the new seeds require far more fertilizer than traditional varieties[4]), pesticides, and controlled irrigation.

At the same time, newer methods of cultivation, including mechanization, were adopted, often as a package of practices to replace traditional agricultural technology.[5] This was often in conjunction with loans conditional on policy changes being made by the developing nations adopting them, such as privatizing fertilizer manufacture and distribution.[4]

Both the Ford Foundation and the Rockefeller Foundation were heavily involved in its initial development in Mexico.[6][7] A key leader was agricultural scientist Norman Borlaug, the "Father of the Green Revolution", who received the Nobel Peace Prize in 1970. He is credited with saving over a billion people from starvation.[8] Another important scientific figure was Yuan Longping, whose work on hybrid rice varieties is credited with saving at least as many lives.[9] Similarly, MS Swaminathan is known as the Father of Green Revolution in India. The basic approach was the development of high-yielding varieties of cereal grains, expansion of irrigation infrastructure, modernization of management techniques, distribution of hybridized seeds, synthetic fertilizers, and pesticides to farmers. As crops began to reach the maximum improvement possible through selective breeding, genetic modification technologies were developed to allow for continued efforts.[10][11]

Studies show that the Green Revolution contributed to widespread eradication of poverty, averted hunger for millions, raised incomes, reduced greenhouse gas emissions, reduced land use for agriculture, and contributed to declines in infant mortality.[12][13][14][15][16]

  1. ^ Eliazer Nelson, Ann Raeboline Lincy; Ravichandran, Kavitha; Antony, Usha (1 October 2019). "The impact of the Green Revolution on indigenous crops of India". Journal of Ethnic Foods. 6 (1): 8. doi:10.1186/s42779-019-0011-9. ISSN 2352-6181. S2CID 204873993.
  2. ^ "Yields vs. Land Use: How the Green Revolution enabled us to feed a growing population". Our World in Data. Retrieved 28 November 2022.
  3. ^ Hazell, Peter B.R. (2009). The Asian Green Revolution - IFPRI Discussion Paper. Intl Food Policy Res Inst. GGKEY:HS2UT4LADZD.
  4. ^ a b Cite error: The named reference agbio was invoked but never defined (see the help page).
  5. ^ Farmer, B. H. (1986). "Perspectives on the 'Green Revolution'in South Asia". Modern Asian Studies. 20 (1): 175–199. doi:10.1017/s0026749x00013627. S2CID 145626108.
  6. ^ Wright, Angus, "Downslope and North: How Soil Degradation and Synthetic Pesticides Drove the Trajectory of Mexican Agriculture through the Twentieth Century" in Christopher R. Boyer, A Land Between Waters: Environmental Histories of Modern Mexico. Tucson: University of Arizona Press 2012, pp. 22–49.
  7. ^ Gary Toenniessen et al. "Building an alliance for a green revolution in Africa." Annals of the New York academy of sciences 1136.1 (2008): 233–242. online
  8. ^ Easterbrook, Gregg (January 1997). "Forgotten Benefactor of Humanity". The Atlantic. Retrieved 24 March 2023.
  9. ^ Bradsher, Keith; Buckley, Chris (23 May 2021). "Yuan Longping, Plant Scientist Who Helped Curb Famine, Dies at 90". The New York Times. ISSN 0362-4331. Retrieved 15 February 2023.
  10. ^ Hurt, The Green Revolution in the Global South, p. 161
  11. ^ The gene revolution : GM crops and unequal development. Sakiko Fukuda-Parr. London: Earthscan. 2007. ISBN 978-1-84977-303-4. OCLC 122928103.{{cite book}}: CS1 maint: others (link)
  12. ^ Pingali, Prabhu L. (31 July 2012). "Green Revolution: Impacts, limits, and the path ahead". Proceedings of the National Academy of Sciences. 109 (31): 12302–12308. Bibcode:2012PNAS..10912302P. doi:10.1073/pnas.0912953109. PMC 3411969. PMID 22826253.
  13. ^ Gollin, Douglas; Hansen, Casper Worm; Wingender, Asger Mose (2021). "Two Blades of Grass: The Impact of the Green Revolution". Journal of Political Economy. 129 (8): 2344–2384. doi:10.1086/714444. ISSN 0022-3808. S2CID 236929281.
  14. ^ von Der Goltz, Jan; Dar, Aaditya; Fishman, Ram; Mueller, Nathaniel D.; Barnwal, Prabhat; McCord, Gordon C. (2020). "Health Impacts of the Green Revolution: Evidence from 600,000 births across the Developing World". Journal of Health Economics. 74: 102373. doi:10.1016/j.jhealeco.2020.102373. ISSN 0167-6296. PMC 7695682. PMID 33002797.
  15. ^ Bharadwaj, Prashant; Fenske, James; Kala, Namrata; Mirza, Rinchan Ali (2020). "The Green revolution and infant mortality in India". Journal of Health Economics. 71: 102314. doi:10.1016/j.jhealeco.2020.102314. ISSN 0167-6296. PMID 32259718.
  16. ^ Stevenson, J. R.; Villoria, N.; Byerlee, D.; Kelley, T.; Maredia, M. (13 May 2013). "Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production". Proceedings of the National Academy of Sciences. 110 (21): 8363–68. Bibcode:2013PNAS..110.8363S. doi:10.1073/pnas.1208065110. PMC 3666715. PMID 23671086.

Developed by StudentB