Gregorio Ricci-Curbastro

Gregorio Ricci-Curbastro
Born(1853-01-12)12 January 1853
Died6 August 1925(1925-08-06) (aged 72)
Bologna, Italy
Alma materSapienza University of Rome University of Bologna Scuola Normale Superiore di Pisa
Known forTensor calculus
Covariant derivative
Ricci calculus
Ricci curvature
Ricci decomposition
Ricci grid
Ricci identity
Scientific career
FieldsMathematics
Doctoral advisorUlisse Dini
Enrico Betti
Doctoral studentsTullio Levi-Civita
Signature

Gregorio Ricci-Curbastro (Italian: [ɡreˈɡɔːrjo ˈrittʃi kurˈbastro]; 12 January 1853 – 6 August 1925) was an Italian mathematician.[1] He is most famous as the discoverer of tensor calculus.

With his former student Tullio Levi-Civita, he wrote his most famous single publication,[2] a pioneering work on the calculus of tensors, signing it as Gregorio Ricci. This appears to be the only time that Ricci-Curbastro used the shortened form of his name in a publication, and continues to cause confusion.

Ricci-Curbastro also published important works in other fields, including a book on higher algebra and infinitesimal analysis,[3] and papers on the theory of real numbers, an area in which he extended the research begun by Richard Dedekind.[4]

  1. ^ Levi-Civita, Tullio (1926), "Commemorazione del socio nazionale prof. Gregorio Ricci-Curbastro" [Commemoration of national member Gregorio Ricci-Curbastro read by member T. Levi-Civita at the meeting of 3 January 1926], Mem. Accad. Lincei (in Italian), 1 (8): 555–564
  2. ^ Ricci, Gregorio; Levi-Civita, Tullio (March 1900). "Méthodes de calcul différentiel absolu et leurs applications" [Methods of the absolute differential calculus and their applications]. Mathematische Annalen (in French). 54 (1–2). Springer: 125–201. doi:10.1007/BF01454201. S2CID 120009332.
  3. ^ Ricci-Curbastro, Gregorio (1918), Lezioni di Analisi algebrica ed infinitesimale (1926 ed.), Padova: Tip. Universitaria
  4. ^ Ricci-Curbastro, Gregorio (1897), "Della teoria dei numeri reali secondo il concetto di Dedekind", Gior. Di Matem., 35: 22–74

Developed by StudentB