Heterojunction bipolar transistor

A heterojunction bipolar transistor (HBT) is a type of bipolar junction transistor (BJT) that uses different semiconductor materials for the emitter and base regions, creating a heterojunction. The HBT improves on the BJT in that it can handle signals of very high frequencies, up to several hundred GHz. It is commonly used in modern ultrafast circuits, mostly radio frequency (RF) systems, and in applications requiring a high power efficiency, such as RF power amplifiers in cellular phones. The idea of employing a heterojunction is as old as the conventional BJT, dating back to a patent from 1951.[1] Detailed theory of heterojunction bipolar transistor was developed by Herbert Kroemer in 1957.[2]

  1. ^ W. Shockley: 'Circuit Element Utilizing Semiconductive Material', United States Patent 2,569,347, 1951.
  2. ^ Herbert Kroemer (1957). "Theory of a Wide-Gap Emitter for Transistors". Proceedings of the IRE. 45 (11): 1535–1537. doi:10.1109/JRPROC.1957.278348. S2CID 51651950.

Developed by StudentB