Hopf algebra

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an (unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

Hopf algebras occur naturally in algebraic topology, where they originated and are related to the H-space concept, in group scheme theory, in group theory (via the concept of a group ring), and in numerous other places, making them probably the most familiar type of bialgebra. Hopf algebras are also studied in their own right, with much work on specific classes of examples on the one hand and classification problems on the other. They have diverse applications ranging from condensed matter physics and quantum field theory[1] to string theory[2] and LHC phenomenology.[3]

  1. ^ Haldane, F. D. M.; Ha, Z. N. C.; Talstra, J. C.; Bernard, D.; Pasquier, V. (1992). "Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory". Physical Review Letters. 69 (14): 2021–2025. Bibcode:1992PhRvL..69.2021H. doi:10.1103/physrevlett.69.2021. PMID 10046379.
  2. ^ Plefka, J.; Spill, F.; Torrielli, A. (2006). "Hopf algebra structure of the AdS/CFT S-matrix". Physical Review D. 74 (6): 066008. arXiv:hep-th/0608038. Bibcode:2006PhRvD..74f6008P. doi:10.1103/PhysRevD.74.066008. S2CID 2370323.
  3. ^ Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan (2017-12-01). "Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case". Journal of High Energy Physics. 2017 (12): 90. arXiv:1704.07931. Bibcode:2017JHEP...12..090A. doi:10.1007/jhep12(2017)090. ISSN 1029-8479. S2CID 54981897.

Developed by StudentB