Hugh Everett III

Hugh Everett III
Hugh Everett in 1964
Born(1930-11-11)November 11, 1930
DiedJuly 19, 1982(1982-07-19) (aged 51)
Alma materCatholic University of America
Princeton University (PhD)
Known forMany-worlds interpretation
Everett's theorem[1][2][3]
ChildrenElizabeth Everett, Mark Oliver Everett
Scientific career
FieldsPhysics
Operations research
Optimization
Game theory
InstitutionsInstitute for Defense Analyses
American Management Systems
Monowave Corporation
Doctoral advisorJohn Archibald Wheeler

Hugh Everett III (/ˈɛvərɪt/; November 11, 1930 – July 19, 1982) was an American physicist who, in his 1957 PhD thesis, proposed what is now known as the many-worlds interpretation (MWI) of quantum mechanics.

In danger of losing his draft deferment, Everett took a research job with the Pentagon the year before completing the oral exam for his PhD and did not continue research in theoretical physics after his graduation.[4] Afterward, he developed the use of generalized Lagrange multipliers for operations research and applied this commercially as a defense analyst and a consultant. He died at the age of 51 in 1982. He is the father of musician Mark Oliver Everett.

Although largely disregarded until near the end of Everett's lifetime, the MWI received more credibility with the discovery of quantum decoherence in the 1970s and has received increased attention in recent decades, becoming one of the mainstream interpretations of quantum mechanics alongside Copenhagen, pilot wave theories, and consistent histories.

  1. ^ Lemaréchal (2001, pp. 125–126): Lemaréchal, Claude (2001). "Lagrangian relaxation". In Michael Jünger and Denis Naddef (ed.). Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science. Vol. 2241. Berlin: Springer-Verlag. pp. 112–156. doi:10.1007/3-540-45586-8_4. ISBN 978-3-540-42877-0. MR 1900016. S2CID 9048698.
  2. ^ Everett (1963)
  3. ^ Everett (1957b)
  4. ^ "The Many Worlds of Hugh Everett" by Peter Byrne, from Scientific American, December 2007

Developed by StudentB