Hydrodeoxygenation (HDO) is a hydrogenolysis process for removing oxygen from oxygen-containing compounds. Typical HDO catalysts commonly are sulfided nickel-molybdenum or cobalt-molybdenum on gamma alumina. An idealized reaction is:[1]
The first review on HDO was published in 1983.[2] HDO is of interest in producing biofuels, which are derived from oxygen-rich precursors like sugars or lipids. An example of a biomass refining process employing hydrodeoxygenation is the NEXBTL process.
HDO of biomass fast pyrolysis vapors under low hydrogen pressures have recently attracted a lot of attention. Bulk molybdenum trioxide (MoO3) was used as catalyst and found to completely deoxygenate cellulose, corn stover, and lignin pyrolysis vapors and produce a stream of hydrocarbons including aromatics, alkenes, and alkanes.[3][4] From an economic viewpoint, only aromatics and alkenes should ideally be produced to enable product incorporation into the existing infrastructure.