Hydroxycarboxylic acid receptor 2

HCAR2
Identifiers
AliasesHCAR2, GPR109A, HCA2, HM74a, HM74b, NIACR1, PUMAG, Puma-g, Niacin receptor 1, hydroxycarboxylic acid receptor 2
External IDsOMIM: 609163; MGI: 1933383; HomoloGene: 4391; GeneCards: HCAR2; OMA:HCAR2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_177551

NM_030701

RefSeq (protein)

NP_808219

NP_109626

Location (UCSC)Chr 12: 122.7 – 122.7 MbChr 5: 124 – 124 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Hydroxycarboxylic acid receptor 2 (HCA2), also known as GPR109A and niacin receptor 1 (NIACR1), is a protein which in humans is encoded (its formation is directed) by the HCAR2 gene and in rodents by the Hcar2 gene.[5][6][7][8] The human HCAR2 gene is located on the long (i.e., "q") arm of chromosome 12 at position 24.31 (notated as 12q24.31).[9] Like the two other hydroxycarboxylic acid receptors, HCA1 and HCA3, HCA2 is a G protein-coupled receptor (GPCR) located on the surface membrane of cells.[5][10] HCA2 binds and thereby is activated by D-β-hydroxybutyric acid (hereafter termed β-hydroxybutyric acid), butyric acid, and niacin (also known as nicotinic acid).[7][8] β-Hydroxybutyric and butyric acids are regarded as the endogenous agents that activate HCA2. Under normal conditions, niacin's blood levels are too low to do so: it is given as a drug in high doses in order to reach levels that activate HCA2.[11]

β-Hydroxybutyric acid, butyric acid, and niacin have actions that are independent of HCA2. For example: 1) β-hydroxybutyric acid activates free fatty acid receptor 3[12] and inhibits some histone deacetylases that regulate the expression of various genes, increase mitochondrial adenosine triphosphate production, and promote antioxidant defenses;[13] 2) butyric acid activates free fatty acid receptor 2 and like β-hydroxybutyric acid activates free fatty acid receptor 3[14] and inhibits some histone deacetylases;[15] and 3) niacin is an NAD+ precursor (see nicotinamide adenine dinucleotide) which when converted to NAD+ can alter over 500 enzymatic reactions that play key roles in regulating inflammation, mitochondrion functions, autophagy, and apoptosis.[13] Consequently, studies examining the functions of HCA2 based on the actions of butyric acid, β-hydroxybutyric acid, niacin, or other HCA2 activators need to provide data indicating that they actually do so by activating HCA2. One commonly used way to do this is to show that the activators have no or reduced effects on Hca2 gene knockout cells or animals (i.e., cells or animals that had their HCa2 genes removed or inactivated) or gene knockdown cells or animals (i.e., cells or animals that had their HCa2 genes ability to express HCA2 greatly reduced).[16] The studies reported here on HCA2 activators focus on those that included experiments in Hca2 gene knockout and/or knockdown cells and animals.

Studies, done mostly in animals and the cells taken from animals or humans, show or suggest that HCA2 functions to 1) inhibit lipolysis and 2) inhibit inflammation and thereby suppress the development of certain diseases in which inflammation contributes to their development and/or severity.[13][17][18] These diseases include: atherosclerosis,[19] stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, pathological pain (i.e. pain due to the abnormal activation of neurons),[13] mastitis,[20] hepatitis due to heavy alcohol consumption,[21] inflammatory bowel diseases, cancer of the colon,[22] and, possibly, psoriasis[23] and brain damage due to heavy alcohol consumption.[24]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000182782Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000045502Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (June 2011). "International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B)". Pharmacological Reviews. 63 (2): 269–90. doi:10.1124/pr.110.003301. PMID 21454438. S2CID 6766923.
  6. ^ Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (June 2002). "Identification of G protein-coupled receptor genes from the human genome sequence". FEBS Letters. 520 (1–3): 97–101. doi:10.1016/S0014-5793(02)02775-8. PMID 12044878. S2CID 7116392.
  7. ^ a b Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB (March 2003). "Molecular identification of high and low affinity receptors for nicotinic acid". The Journal of Biological Chemistry. 278 (11): 9869–74. doi:10.1074/jbc.M210695200. PMID 12522134.
  8. ^ a b Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, Hiyama H, Matsuo A, Matsushime H, Furuichi K (March 2003). "Molecular identification of nicotinic acid receptor". Biochemical and Biophysical Research Communications. 303 (1): 364–9. doi:10.1016/S0006-291X(03)00342-5. PMID 12646212.
  9. ^ "Entrez Gene: GPR109A G protein-coupled receptor 109A".
  10. ^ S Offermanns, SL Colletti, AP IJzerman, TW Lovenberg, G Semple, A Wise, MG Waters. "Hydroxycarboxylic acid receptors". IUPHAR/BPS Guide to Pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 13 July 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  11. ^ Ikeda T, Nishida A, Yamano M, Kimura I (November 2022). "Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases". Pharmacology & Therapeutics. 239: 108273. doi:10.1016/j.pharmthera.2022.108273. PMID 36057320. S2CID 251992642.
  12. ^ Miyamoto J, Ohue-Kitano R, Mukouyama H, Nishida A, Watanabe K, Igarashi M, Irie J, Tsujimoto G, Satoh-Asahara N, Itoh H, Kimura I (November 2019). "Ketone body receptor GPR43 regulates lipid metabolism under ketogenic conditions". Proceedings of the National Academy of Sciences of the United States of America. 116 (47): 23813–23821. Bibcode:2019PNAS..11623813M. doi:10.1073/pnas.1912573116. PMC 6876247. PMID 31685604.
  13. ^ a b c d Taing K, Chen L, Weng HR (April 2023). "Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain". Neural Regeneration Research. 18 (4): 763–768. doi:10.4103/1673-5374.354514. PMC 9700108. PMID 36204834.
  14. ^ Milligan G, Barki N, Tobin AB (March 2021). "Chemogenetic Approaches to Explore the Functions of Free Fatty Acid Receptor 2" (PDF). Trends in Pharmacological Sciences. 42 (3): 191–202. doi:10.1016/j.tips.2020.12.003. PMID 33495026. S2CID 231712546.
  15. ^ Bourassa MW, Alim I, Bultman SJ, Ratan RR (June 2016). "Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?". Neuroscience Letters. 625: 56–63. doi:10.1016/j.neulet.2016.02.009. PMC 4903954. PMID 26868600.
  16. ^ Spigoni V, Cinquegrani G, Iannozzi NT, Frigeri G, Maggiolo G, Maggi M, Parello V, Dei Cas A (2022). "Activation of G protein-coupled receptors by ketone bodies: Clinical implication of the ketogenic diet in metabolic disorders". Frontiers in Endocrinology. 13: 972890. doi:10.3389/fendo.2022.972890. PMC 9631778. PMID 36339405.
  17. ^ Graff EC, Fang H, Wanders D, Judd RL (February 2016). "Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2". Metabolism: Clinical and Experimental. 65 (2): 102–13. doi:10.1016/j.metabol.2015.10.001. PMID 26773933.
  18. ^ Tan JK, McKenzie C, Mariño E, Macia L, Mackay CR (April 2017). "Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation". Annual Review of Immunology. 35: 371–402. doi:10.1146/annurev-immunol-051116-052235. PMID 28446062.
  19. ^ Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, Horlock D, Vijay A, Giam B, Vinh A, Johnson C, Fiedler A, Donner D, Snelson M, Coughlan MT, Phillips S, Du XJ, El-Osta A, Drummond G, Lambert GW, Spector TD, Valdes AM, Mackay CR, Marques FZ (April 2020). "Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease". Circulation. 141 (17): 1393–1403. doi:10.1161/CIRCULATIONAHA.119.043081. hdl:10536/DRO/DU:30135388. PMID 32093510. S2CID 211476145.
  20. ^ Guo W, Li W, Su Y, Liu S, Kan X, Ran X, Cao Y, Fu S, Liu J (2021). "GPR109A alleviate mastitis and enhances the blood milk barrier by activating AMPK/Nrf2 and autophagy". International Journal of Biological Sciences. 17 (15): 4271–4284. doi:10.7150/ijbs.62380. PMC 8579459. PMID 34803497.
  21. ^ Chen Y, Ouyang X, Hoque R, Garcia-Martinez I, Yousaf MN, Tonack S, Offermanns S, Dubuquoy L, Louvet A, Mathurin P, Massey V, Schnabl B, Bataller RA, Mehal WZ (September 2018). "β-Hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway". Journal of Hepatology. 69 (3): 687–696. doi:10.1016/j.jhep.2018.04.004. PMC 6098974. PMID 29705237.
  22. ^ Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (January 2014). "Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis". Immunity. 40 (1): 128–39. doi:10.1016/j.immuni.2013.12.007. PMC 4305274. PMID 24412617.
  23. ^ Straß S, Geiger J, Cloos N, Späth N, Geiger S, Schwamborn A, De Oliveira da Cunha L, Martorelli M, Guse JH, Sandri TL, Burnet M, Laufer S (June 2023). "Immune cell targeted fumaric esters support a role of GPR109A as a primary target of monomethyl fumarate in vivo". Inflammopharmacology. 31 (3): 1223–1239. doi:10.1007/s10787-023-01186-0. PMID 37004600. S2CID 257912134.
  24. ^ Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, Liu J (April 2023). "Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis". Biomedicine & Pharmacotherapy. 160: 114308. doi:10.1016/j.biopha.2023.114308. PMID 36709599. S2CID 256383935.

Developed by StudentB