Inelastic scattering

In chemistry, nuclear physics, and particle physics, inelastic scattering is a process in which the internal states of a particle or a system of particles changes after a collision. Often, this means the kinetic energy of the incident particle is not conserved (in contrast to elastic scattering). Additionally, relativistic collisions which involve a transition from one type of particle to another are referred to as inelastic even if the outgoing particles have the same kinetic energy as the incoming ones.[1] Processes which are governed by elastic collisions at a microscopic level will appear to be inelastic if a macroscopic observer only has access to a subset of the degrees of freedom. In Compton scattering for instance, the two particles in the collision transfer energy causing a loss of energy in the measured particle.[2]

  1. ^ Warren Siegel (1999). Fields. p. 362. Retrieved 2024-04-30.
  2. ^ “Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” B.J. Inkson, “Materials Characterization Using Nondestructive Evaluation (NDE) Methods,” 2016. https://www.sciencedirect.com/topics/chemistry/elastic-scattering

Developed by StudentB