This article needs additional citations for verification. (July 2019) |
Part of a series of articles about |
Calculus |
---|
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts, and is sufficiently powerful to integrate any rational expression involving trigonometric functions.[1]
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)