Ionospheric storm

X-Ray image of aurora borealis taken during an ionospheric storm by the Global Geospace Science Polar satellite

Ionospheric storms are storms which contain varying densities[1] of energised electrons in the ionosphere as produced from the Sun. Ionospheric storms are caused by geomagnetic storms.[2] They are categorised into positive and negative storms, where positive storms have a high density of electrons and negative storms contain a lower density.[3] The total electron content (TEC) is used to measure these densities, and is a key variable used in data to record and compare the intensities of ionospheric storms.

Ionospheric storm occurrences are strongly linked with sudden increases of solar wind speed, where solar wind brings energised electrons into the upper atmosphere of Earth and contributes to increased TEC.[4] Larger storms form global visibility of auroras. Auroras are most commonly seen in the Arctic Circle; however, large ionospheric storms allow for them to be visible at somewhat lower latitudes. The most intense ionospheric storm occurred in 1859, commonly named the “solar storm of 1859” or the “Carrington Event.” The Carrington Event was named after Richard Carrington, an English astronomer who observed the irregular sun activity[5] that occurred during the Carrington Event. The intensity of the storm brought the visibility of the aurora to lower latitudes, and it was reportedly seen in places such as Florida and the Caribbean. Ionospheric storms can happen at any time and location.[6]

F-region and D-region ionospheric storms are also considered main categories of ionospheric storms. The F-region storms occur due to sudden increases of energised electrons instilled into Earth's ionosphere. The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km.[7] The duration of these storms are around a day and reoccur every approximately 27.3 days.[6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere. D-region storms occur immediately after F-region storms, and are referred to as the “Post-Storm Effect," the duration of it spanning for a week after the F-region storm's occurrence.[8]

  1. ^ Cander, Ljiljana R. (2018). Ionospheric Space Weather. Springer. ISBN 978-3-319-99331-7.
  2. ^ Cite error: The named reference :1 was invoked but never defined (see the help page).
  3. ^ Fagundes, P. R.; Cardoso, F. A.; Fejer, B. G.; Venkatesh, K.; Ribeiro, B. a. G.; Pillat, V. G. (2016). "Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector". Journal of Geophysical Research: Space Physics. 121 (6): 5613–5625. Bibcode:2016JGRA..121.5613F. doi:10.1002/2015JA022214. S2CID 51916199.
  4. ^ Verkhoglyadova, O. P.; Tsurutani, B. T.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Paxton, L. J.; Komjathy, A. (2016). "Solar wind driving of ionosphere-thermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015". Journal of Geophysical Research: Space Physics. 121 (9): 8900–8923. Bibcode:2016JGRA..121.8900V. doi:10.1002/2016JA022883. S2CID 133299363.
  5. ^ Clark, Stuart (2007). "Astronomical fire: Richard Carrington and the solar flare of 1859". Endeavour. 31 (3): 104–109. doi:10.1016/j.endeavour.2007.07.004. PMID 17764743.
  6. ^ a b Ionospheric Storms (Ionospheric Abnormality )(हिन्दी ), archived from the original on 2021-12-21, retrieved 2020-05-28
  7. ^ c=AU; co=Commonwealth of Australia; ou=Department of Sustainability, Environment. "Space Weather Services website". www.sws.bom.gov.au. Retrieved 2020-05-28.{{cite web}}: CS1 maint: multiple names: authors list (link)
  8. ^ "Ionospheric Storms and Space Weather". www.albany.edu. Retrieved 2020-05-28.

Developed by StudentB