Irving Langmuir

Irving Langmuir
Langmuir in an undated photo
Born(1881-01-31)January 31, 1881[1]
DiedAugust 16, 1957(1957-08-16) (aged 76)
NationalityAmerican
Alma mater
Known for
Awards
Scientific career
Fields
Institutions
Thesis Ueber partielle Wiedervereinigung dissociierter Gase im Verlauf einer Abkühlung  (1909)
Doctoral advisorFriedrich Dolezalek
Other academic advisorsWalther Nernst

Irving Langmuir (/ˈlæŋmjʊər/;[2] January 31, 1881 – August 16, 1957) was an American chemist, physicist, and engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry.

Langmuir's most famous publication is the 1919 article "The Arrangement of Electrons in Atoms and Molecules" in which, building on Gilbert N. Lewis's cubical atom theory and Walther Kossel's chemical bonding theory, he outlined his "concentric theory of atomic structure".[3] Langmuir became embroiled in a priority dispute with Lewis over this work; Langmuir's presentation skills were largely responsible for the popularization of the theory, although the credit for the theory itself belongs mostly to Lewis.[4] While at General Electric from 1909 to 1950, Langmuir advanced several fields of physics and chemistry, inventing the gas-filled incandescent lamp and the hydrogen welding technique. The Langmuir Laboratory for Atmospheric Research near Socorro, New Mexico, was named in his honor, as was the American Chemical Society journal for surface science called Langmuir.[1]

  1. ^ a b c Taylor, H. (1958). "Irving Langmuir 1881-1957". Biographical Memoirs of Fellows of the Royal Society. 4: 167–184. doi:10.1098/rsbm.1958.0015. S2CID 84600396.
  2. ^ "Langmuir, Irving", in Webster's Biographical Dictionary (1943), Springfield, MA: Merriam-Webster.
  3. ^ Langmuir, Irving (June 1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002.
  4. ^ Coffey, Patrick (2008). Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry. Oxford University Press. pp. 134–146. ISBN 978-0-19-532134-0.

Developed by StudentB