Limit inferior and limit superior

In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit.

An illustration of limit superior and limit inferior. The sequence xn is shown in blue. The two red curves approach the limit superior and limit inferior of xn, shown as dashed black lines. In this case, the sequence accumulates around the two limits. The superior limit is the larger of the two, and the inferior limit is the smaller. The inferior and superior limits agree if and only if the sequence is convergent (i.e., when there is a single limit).

The limit inferior of a sequence is denoted by and the limit superior of a sequence is denoted by


Developed by StudentB