This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:
A direct example of a location parameter is the parameter of the normal distribution. To see this, note that the probability density function of a normal distribution can have the parameter factored out and be written as:
thus fulfilling the first of the definitions given above.
The above definition indicates, in the one-dimensional case, that if is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.
A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form
where is the location parameter, θ represents additional parameters, and is a function parametrized on the additional parameters.