Longshore drift

Diagram demonstrating longshore drift:
  1. beach
  2. sea
  3. longshore current direction
  4. incoming waves
  5. swash
  6. backwash

Longshore drift from longshore current is a geological process that consists of the transportation of sediments (clay, silt, pebbles, sand, shingle, shells) along a coast parallel to the shoreline, which is dependent on the angle of incoming wave direction. Oblique incoming wind squeezes water along the coast, generating a water current that moves parallel to the coast. Longshore drift is simply the sediment moved by the longshore current. This current and sediment movement occurs within the surf zone. The process is also known as littoral drift.[1]

Beach sand is also moved on such oblique wind days, due to the swash and backwash of water on the beach. Breaking surf sends water up the coast (swash) at an oblique angle and gravity then drains the water straight downslope (backwash) perpendicular to the shoreline. Thus beach sand can move downbeach in a sawtooth fashion many tens of meters (yards) per day. This process is called "beach drift", but some workers regard it as simply part of "longshore drift" because of the overall movement of sand parallel to the coast.

Longshore drift affects numerous sediment sizes as it works in slightly different ways depending on the sediment (e.g. the difference in long-shore drift of sediments from a sandy beach to that of sediments from a shingle beach). Sand is largely affected by the oscillatory force of breaking waves, the motion of sediment due to the impact of breaking waves and bed shear from long-shore current.[2] Because shingle beaches are much steeper than sandy ones, plunging breakers are more likely to form, causing the majority of longshore transport to occur in the swash zone, due to a lack of an extended surf zone.[2]

  1. ^ Gomez-Pina G (2002) "Sand dune management problems and techniques, Spain", Journal of Coastal Research, Iss 36: 325–332.
  2. ^ a b Reeve et al., 2004

Developed by StudentB