Louis Nirenberg

Louis Nirenberg
Nirenberg in 1975
Born(1925-02-28)February 28, 1925
DiedJanuary 26, 2020(2020-01-26) (aged 94)
Manhattan, New York, U.S.
CitizenshipCanadian and American
Alma materMcGill University (BS, 1945)
New York University (PhD, 1950)
Known forPartial differential equations
Gagliardo–Nirenberg interpolation inequality
Gagliardo–Nirenberg–Sobolev inequality
Bounded mean oscillation (John–Nirenberg space)
Nirenberg's conjecture[1]
AwardsBôcher Memorial Prize (1959)
Crafoord Prize (1982)
Steele Prize (1994, 2014)
National Medal of Science (1995)
Chern Medal (2010)
Abel Prize in Mathematics (2015)
Scientific career
FieldsMathematics
InstitutionsNew York University
Thesis The determination of a closed convex surface having given line elements  (1949)
Doctoral advisorJames Stoker
Doctoral students
Notes

Louis Nirenberg (February 28, 1925 – January 26, 2020) was a Canadian-American mathematician, considered one of the most outstanding mathematicians of the 20th century.[2][3]

Nearly all of his work was in the field of partial differential equations. Many of his contributions are now regarded as fundamental to the field, such as his strong maximum principle for second-order parabolic partial differential equations and the Newlander–Nirenberg theorem in complex geometry. He is regarded as a foundational figure in the field of geometric analysis, with many of his works being closely related to the study of complex analysis and differential geometry.[4]

  1. ^ Lawson, H. Blaine Jr. (April 21, 2012). "Reflections on the Early Mathematical Life of Bob Osserman" (PDF).
  2. ^ Allyn Jackson (March 2002). "Interview with Louis Nirenberg" (PDF). Notices of the AMS. 49 (4): 441–449. Archived from the original (PDF) on March 3, 2016. Retrieved March 26, 2015.
  3. ^ Caffarelli, Luis A.; Li, YanYan. Preface [Dedicated to Louis Nirenberg on the occasion of his 85th birthday. Part I]. Discrete Contin. Dyn. Syst. 28 (2010), no. 2, i–ii. doi:10.3934/dcds.2010.28.2i
  4. ^ Yau, Shing-Tung. Perspectives on geometric analysis. Surveys in differential geometry. Vol. X, 275–379, Surv. Differ. Geom., 10, Int. Press, Somerville, MA, 2006.

Developed by StudentB