Machine learning

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.[1] Advances in the field of deep learning have allowed neural networks to surpass many previous approaches in performance.[2]

ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine.[3][4] The application of ML to business problems is known as predictive analytics.

Statistics and mathematical optimization (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysis (EDA) via unsupervised learning.[6][7]

From a theoretical viewpoint, probably approximately correct (PAC) learning provides a framework for describing machine learning.

  1. ^ The definition "without being explicitly programmed" is often attributed to Arthur Samuel, who coined the term "machine learning" in 1959, but the phrase is not found verbatim in this publication, and may be a paraphrase that appeared later. Confer "Paraphrasing Arthur Samuel (1959), the question is: How can computers learn to solve problems without being explicitly programmed?" in Koza, John R.; Bennett, Forrest H.; Andre, David; Keane, Martin A. (1996). "Automated Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming". Artificial Intelligence in Design '96. Artificial Intelligence in Design '96. Dordrecht, Netherlands: Springer Netherlands. pp. 151–170. doi:10.1007/978-94-009-0279-4_9. ISBN 978-94-010-6610-5.
  2. ^ "What is Machine Learning?". IBM. 22 September 2021. Archived from the original on 2023-12-27. Retrieved 2023-06-27.
  3. ^ Hu, Junyan; Niu, Hanlin; Carrasco, Joaquin; Lennox, Barry; Arvin, Farshad (2020). "Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning". IEEE Transactions on Vehicular Technology. 69 (12): 14413–14423. doi:10.1109/tvt.2020.3034800. ISSN 0018-9545. S2CID 228989788.
  4. ^ Yoosefzadeh-Najafabadi, Mohsen; Hugh, Earl; Tulpan, Dan; Sulik, John; Eskandari, Milad (2021). "Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean?". Front. Plant Sci. 11: 624273. doi:10.3389/fpls.2020.624273. PMC 7835636. PMID 33510761.
  5. ^ Cite error: The named reference bishop2006 was invoked but never defined (see the help page).
  6. ^ Machine learning and pattern recognition "can be viewed as two facets of the same field".[5]: vii 
  7. ^ Friedman, Jerome H. (1998). "Data Mining and Statistics: What's the connection?". Computing Science and Statistics. 29 (1): 3–9.

Developed by StudentB