Memory

Overview of the forms and functions of memory

Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action.[1] If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop.[2] Memory loss is usually described as forgetfulness or amnesia.[3][4][5][6][7][8]

Memory is often understood as an informational processing system with explicit and implicit functioning that is made up of a sensory processor, short-term (or working) memory, and long-term memory.[9] This can be related to the neuron. The sensory processor allows information from the outside world to be sensed in the form of chemical and physical stimuli and attended to various levels of focus and intent. Working memory serves as an encoding and retrieval processor. Information in the form of stimuli is encoded in accordance with explicit or implicit functions by the working memory processor. The working memory also retrieves information from previously stored material. Finally, the function of long-term memory is to store through various categorical models or systems.[9]

Declarative, or explicit memory, is the conscious storage and recollection of data.[10] Under declarative memory resides semantic and episodic memory. Semantic memory refers to memory that is encoded with specific meaning.[2] Meanwhile, episodic memory refers to information that is encoded along a spatial and temporal plane.[11][12][13] Declarative memory is usually the primary process thought of when referencing memory.[2] Non-declarative, or implicit, memory is the unconscious storage and recollection of information.[14] An example of a non-declarative process would be the unconscious learning or retrieval of information by way of procedural memory, or a priming phenomenon.[2][14][15] Priming is the process of subliminally arousing specific responses from memory and shows that not all memory is consciously activated,[15] whereas procedural memory is the slow and gradual learning of skills that often occurs without conscious attention to learning.[2][14]

Memory is not a perfect processor and is affected by many factors. The ways by which information is encoded, stored, and retrieved can all be corrupted. Pain, for example, has been identified as a physical condition that impairs memory, and has been noted in animal models as well as chronic pain patients.[16][17][18][19] The amount of attention given new stimuli can diminish the amount of information that becomes encoded for storage.[2] Also, the storage process can become corrupted by physical damage to areas of the brain that are associated with memory storage, such as the hippocampus.[20][21] Finally, the retrieval of information from long-term memory can be disrupted because of decay within long-term memory.[2] Normal functioning, decay over time, and brain damage all affect the accuracy and capacity of the memory.[22][23]

  1. ^ Sherwood L (1 January 2015). Human Physiology: From Cells to Systems. Cengage Learning. pp. 157–162. ISBN 978-1-305-44551-2.
  2. ^ a b c d e f g Eysenck M (2012). Attention and Arousal : Cognition and Performance. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-68390-9. OCLC 858929786.
  3. ^ Staniloiu A, Markowitsch HJ (2012-11-01). "Towards solving the riddle of forgetting in functional amnesia: recent advances and current opinions". Frontiers in Psychology. 3. Frontiers Media SA: 403. doi:10.3389/fpsyg.2012.00403. PMC 3485580. PMID 23125838.
  4. ^ Smith CN (November 2014). "Retrograde memory for public events in mild cognitive impairment and its relationship to anterograde memory and neuroanatomy". Neuropsychology. 28 (6). American Psychological Association (APA): 959–72. doi:10.1037/neu0000117. PMC 4227913. PMID 25068664.
  5. ^ Ortega-de San Luis C, Ryan TJ (May 2018). "United states of amnesia: rescuing memory loss from diverse conditions". Disease Models & Mechanisms. 11 (5). The Company of Biologists: dmm035055. doi:10.1242/dmm.035055. PMC 5992608. PMID 29784659.
  6. ^ Staniloiu A, Markowitsch HJ (April 2012). "The remains of the day in dissociative amnesia". Brain Sciences. 2 (2). MDPI AG: 101–29. doi:10.3390/brainsci2020101. PMC 4061789. PMID 24962768.
  7. ^ Spiegel DR, Smith J, Wade RR, Cherukuru N, Ursani A, Dobruskina Y, et al. (2017-10-24). "Transient global amnesia: current perspectives". Neuropsychiatric Disease and Treatment. 13. Dove Medical Press Ltd.: 2691–2703. doi:10.2147/ndt.s130710. PMC 5661450. PMID 29123402.
  8. ^ Bauer PJ, Larkina M (2013-11-18). "The onset of childhood amnesia in childhood: a prospective investigation of the course and determinants of forgetting of early-life events". Memory. 22 (8). Informa UK Limited: 907–24. doi:10.1080/09658211.2013.854806. PMC 4025992. PMID 24236647.
  9. ^ a b Baddeley A (2007-03-15). Working Memory, Thought, and Action. Oxford University Press. doi:10.1093/acprof:oso/9780198528012.001.0001. ISBN 978-0-19-852801-2. S2CID 142763675.
  10. ^ Graf P, Schacter DL (July 1985). "Implicit and explicit memory for new associations in normal and amnesic subjects" (PDF). Journal of Experimental Psychology: Learning, Memory, and Cognition. 11 (3): 501–18. doi:10.1037/0278-7393.11.3.501. PMID 3160813. Archived from the original (PDF) on 2021-10-26. Retrieved 2019-03-12.
  11. ^ Schacter DL, Addis DR (May 2007). "The cognitive neuroscience of constructive memory: remembering the past and imagining the future". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 362 (1481). The Royal Society: 773–86. doi:10.1098/rstb.2007.2087. PMC 2429996. PMID 17395575.
  12. ^ Schacter DL, Addis DR, Buckner RL (September 2007). "Remembering the past to imagine the future: the prospective brain". Nature Reviews. Neuroscience. 8 (9). Springer Nature: 657–61. doi:10.1038/nrn2213. PMID 17700624. S2CID 10376207.
  13. ^ Szpunar KK (March 2010). "Episodic Future Thought: An Emerging Concept". Perspectives on Psychological Science. 5 (2). SAGE Publications: 142–62. doi:10.1177/1745691610362350. PMID 26162121. S2CID 8674284.
  14. ^ a b c Foerde K, Knowlton BJ, Poldrack RA (August 2006). "Modulation of competing memory systems by distraction". Proceedings of the National Academy of Sciences of the United States of America. 103 (31). Proceedings of the National Academy of Sciences: 11778–83. Bibcode:2006PNAS..10311778F. doi:10.1073/pnas.0602659103. PMC 1544246. PMID 16868087.
  15. ^ a b Tulving E, Schacter DL (January 1990). "Priming and human memory systems". Science. 247 (4940): 301–6. Bibcode:1990Sci...247..301T. doi:10.1126/science.2296719. PMID 2296719. S2CID 40894114.
  16. ^ Moriarty O, McGuire BE, Finn DP (2011). "The effect of pain on cognitive function: a review of clinical and preclinical research". Prog Neurobiol. 93 (3): 385–404. doi:10.1016/j.pneurobio.2011.01.002. hdl:10379/3129. PMID 21216272. S2CID 207406677.
  17. ^ Low LA (2013). "The impact of pain upon cognition: what have rodent studies told us?". Pain. 154 (12): 2603–2605. doi:10.1016/j.pain.2013.06.012. PMC 3808511. PMID 23774574.
  18. ^ Liu X, Li L, Tang F, Wu S, Hu Y (2014). "Memory impairment in chronic pain patients and the related neuropsychological mechanisms: a review". Acta Neuropsychiatrica. 26 (4): 195–201. doi:10.1017/neu.2013.47. PMID 25279415. S2CID 38818387.
  19. ^ Lazzarim MK, Targa A, Sardi NF, Hack GR, Tobaldini G, Martynhak BJ, et al. (December 2020). "Pain impairs consolidation, but not acquisition or retrieval of a declarative memory". Behavioural Pharmacology. 31 (8): 707–715. doi:10.1097/FBP.0000000000000576. PMID 32925225. S2CID 221723081.
  20. ^ Squire LR (October 2009). "Memory and brain systems: 1969–2009". The Journal of Neuroscience. 29 (41): 12711–12716. doi:10.1523/jneurosci.3575-09.2009. PMC 2791502. PMID 19828780.
  21. ^ Squire LR, Wixted JT (2011-07-21). "The cognitive neuroscience of human memory since H.M". Annual Review of Neuroscience. 34 (1). Annual Reviews: 259–288. doi:10.1146/annurev-neuro-061010-113720. PMC 3192650. PMID 21456960.
  22. ^ Li M, Zhong N, Lu S, Wang G, Feng L, Hu B (2016-01-05). Branchi I (ed.). "Cognitive Behavioral Performance of Untreated Depressed Patients with Mild Depressive Symptoms". PLOS ONE. 11 (1). Public Library of Science (PLoS): e0146356. Bibcode:2016PLoSO..1146356L. doi:10.1371/journal.pone.0146356. PMC 4711581. PMID 26730597.
  23. ^ Bennett IJ, Rivera HG, Rypma B (May 2013). "Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method". NeuroImage. 72. Elsevier BV: 20–32. doi:10.1016/j.neuroimage.2013.01.030. PMC 3602125. PMID 23357076.

Developed by StudentB