Meteorology (Aristotle)

Meteorologica

Meteorology (Greek: Μετεωρολογικά; Latin: Meteorologica or Meteora) is a treatise by Aristotle. The text discusses what Aristotle believed to have been all the affections common to air and water, and the kinds and parts of the Earth and the affections of its parts. It includes early accounts of water evaporation, earthquakes, and other weather phenomena.

Aristotle's Meteorologica is the oldest comprehensive treatise on the subject of meteorology. Written around 340 B.C,[1] it consists of four books; three pertaining to meteorology, and one to chemistry. Despite its ancient origins, Meteorologica was the basis for all modern day meteorology texts throughout Western Civilization up to the 17th century.

Throughout this treatise, Aristotle outlines two theories:

  1. The universe is spherical
    1. The Earth’s inner core is composed by the orbits of heavenly bodies
    2. The universe has two regions; the celestial (region past the Moon’s orbit) and the terrestrial region-sphere (the Moon’s tendency to orbit around the Earth)
    3. From this theory, Aristotle achieved a distinction between what was understood (astronomy) and his new findings (meteorology)
  2. The "Four-element Theory"
    1. The terrestrial region was composed of the four elements: water, earth, fire, and air
    2. These elements were arranged in spherical strata, with Earth as its center and the Moon on the outskirts of the sphere
    3. They were in constant interchange with one another, e.g: heat from the Sun collides with cold water, creating air and mist

Meteorologica does not only contain the theories of Ancient Greeks, but is the accumulation of the findings from poets, philosophers, historians, etc. In fact, many of the hypotheses are derived from the Egyptians, including Shepseskaf-ankh, a physician and priest. Further, Aristotle's knowledge of winds stems from the Babylonians.

Throughout his treatise, Aristotle is methodical and consistent while presenting his findings. First, he introduces the topic by presenting the theories of other scholars. By refuting or supporting their claims, Aristotle shapes his own assertions. Scholars such as Anaxagoras derived many of their theories on inferences, strongly basing their discoveries on observations rather than fact. In comparison, Aristotle approached his research by drawing deductive inferences when examining his theories. While formulating his hypotheses, he preconceived his theories based on observed weather phenomena. In lieu of using weather observations to develop his findings, he interpreted these observations to support his hypotheses.

An Arabic compendium of Meteorology, called al-'Athar al-`Ulwiyyah (Arabic: الآثار العلوية) and produced c. 800 CE by the Antiochene scholar Yahya ibn al-Batriq, was widely circulated among Muslim scholars over the following centuries.[2] This was translated into Latin by Gerard of Cremona in the 12th century – and by this means, during the Twelfth-century Renaissance, entered the Western European world of medieval scholasticism.[3] Gerard's "old translation" (vetus translatio) was superseded by an improved text by William of Moerbeke, the nova translatio, which was widely read, as it survives in numerous manuscripts; it received commentary by Thomas Aquinas and was often printed during the Renaissance.[4]

  1. ^ Frisinger, H. Howard (1972-07-01). "Aristotle and his "Meteorologica"". Bulletin of the American Meteorological Society. 53 (7): 634–638. doi:10.1175/1520-0477(1972)053<0634:AAH>2.0.CO;2. ISSN 0003-0007.
  2. ^ This version was the basis for the early thirteenth-century Hebrew translation by Samuel ben Judah ibn Tibbon (Schoonheim 2000).
  3. ^ Translations of both texts are in Peter L. Schoonheim, Aristotle's Meteorology in the Arabico-Latin Tradition, (Leiden: Brill) 2000.
  4. ^ A copy of Meteorologicorum libri quatuor, edited by Joachim Périon with corrections by Nicolas de Grouchy (Paris, 1571) exists in the Morgan Library (New York), the Cambridge University Library, the Bibliotheek Universiteit Leiden and the Tom Slick rare book collections of the Southwest Research Institute library (San Antonio, Texas), and other libraries.

Developed by StudentB