Metric signature

In mathematics, the signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, v conventionally represents the number of time or virtual dimensions, and p the number of space or physical dimensions. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. The signature is often denoted by a pair of integers (v, p) implying r = 0, or as an explicit list of signs of eigenvalues such as (+, −, −, −) or (−, +, +, +) for the signatures (1, 3, 0) and (3, 1, 0), respectively.[1]

The signature is said to be indefinite or mixed if both v and p are nonzero, and degenerate if r is nonzero. A Riemannian metric is a metric with a positive definite signature (v, 0). A Lorentzian metric is a metric with signature (p, 1), or (1, p).

There is another notion of signature of a nondegenerate metric tensor given by a single number s defined as (vp), where v and p are as above, which is equivalent to the above definition when the dimension n = v + p is given or implicit. For example, s = 1 − 3 = −2 for (+, −, −, −) and its mirroring s' = −s = +2 for (−, +, +, +).

  1. ^ Rowland, Todd. "Matrix Signature." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/MatrixSignature.html

Developed by StudentB