Modular arithmetic

Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12.

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in 7 + 8 = 15, but 15:00 reads as 3:00 on the clock face because clocks "wrap around" every 12 hours and the hour number starts over at zero when it reaches 12. We say that 15 is congruent to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, 8:00 represents a period of 8 hours, and twice this would give 16:00, which reads as 4:00 on the clock face, written as 2 × 8 ≡ 4 (mod 12).


Developed by StudentB