Monocrystalline silicon

A silicon ingot

Monocrystalline silicon, often referred to as single-crystal silicon or simply mono-Si, is a critical material widely used in modern electronics and photovoltaics. As the foundation for silicon-based discrete components and integrated circuits, it plays a vital role in virtually all modern electronic equipment, from computers to smartphones. Additionally, mono-Si serves as a highly efficient light-absorbing material for the production of solar cells, making it indispensable in the renewable energy sector.

It consists of silicon in which the crystal lattice of the entire solid is continuous, unbroken to its edges, and free of any grain boundaries (i.e. a single crystal). Mono-Si can be prepared as an intrinsic semiconductor that consists only of exceedingly pure silicon, or it can be doped by the addition of other elements such as boron or phosphorus to make p-type or n-type silicon.[1] Due to its semiconducting properties, single-crystal silicon is perhaps the most important technological material of the last few decades—the "silicon era".[2] Its availability at an affordable cost has been essential for the development of the electronic devices on which the present-day electronics and IT revolution is based.

Monocrystalline silicon differs from other allotropic forms, such as non-crystalline amorphous silicon—used in thin-film solar cells—and polycrystalline silicon, which consists of small crystals known as crystallites.

  1. ^ Monkowski, J. R.; Bloem, J.; Giling, L. J.; Graef, M. W. M. (1979). "Comparison of dopant incorporation into polycrystalline and monocrystalline silicon". Appl. Phys. Lett. 35 (5): 410–412. Bibcode:1979ApPhL..35..410M. doi:10.1063/1.91143.
  2. ^ W.Heywang, K.H.Zaininger, Silicon: the semiconductor material, in Silicon: evolution and future of a technology, P.Siffert, E.F.Krimmel eds., Springer Verlag, 2004.

Developed by StudentB