Motion (geometry)

A glide reflection is a type of Euclidean motion.

In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion.[1] More generally, the term motion is a synonym for surjective isometry in metric geometry,[2] including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners.

Motions can be divided into direct and indirect motions. Direct, proper or rigid motions are motions like translations and rotations that preserve the orientation of a chiral shape. Indirect, or improper motions are motions like reflections, glide reflections and Improper rotations that invert the orientation of a chiral shape. Some geometers define motion in such a way that only direct motions are motions[citation needed].

  1. ^ Gunter Ewald (1971) Geometry: An Introduction, p. 179, Belmont: Wadsworth ISBN 0-534-00034-7
  2. ^ M.A. Khamsi & W.A. Kirk (2001) An Introduction to Metric Spaces and Fixed Point Theorems, p. 15, John Wiley & Sons ISBN 0-471-41825-0

Developed by StudentB