Multivector

In multilinear algebra, a multivector, sometimes called Clifford number or multor,[1] is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simple k-vectors[2] (also known as decomposable k-vectors[3] or k-blades) of the form

where are in V.

A k-vector is such a linear combination that is homogeneous of degree k (all terms are k-blades for the same k). Depending on the authors, a "multivector" may be either a k-vector or any element of the exterior algebra (any linear combination of k-blades with potentially differing values of k).[4]

In differential geometry, a k-vector is a vector in the exterior algebra of the tangent vector space; that is, it is an antisymmetric tensor obtained by taking linear combinations of the exterior product of k tangent vectors, for some integer k ≥ 0. A differential k-form is a k-vector in the exterior algebra of the dual of the tangent space, which is also the dual of the exterior algebra of the tangent space.

For k = 0, 1, 2 and 3, k-vectors are often called respectively scalars, vectors, bivectors and trivectors; they are respectively dual to 0-forms, 1-forms, 2-forms and 3-forms.[5][6]

  1. ^ John Snygg (2012), A New Approach to Differential Geometry Using Clifford’s Geometric Algebra, Birkhäuser, p. 5 §2.12
  2. ^ Cite error: The named reference Flanders was invoked but never defined (see the help page).
  3. ^ Wendell Fleming (1977) [1965] Functions of Several Variables, section 7.5 Multivectors, page 295, ISBN 978-1-4684-9461-7
  4. ^ Élie Cartan, The theory of spinors, p. 16, considers only homogeneous vectors, particularly simple ones, referring to them as "multivectors" (collectively) or p-vectors (specifically).
  5. ^ William M Pezzaglia Jr. (1992). "Clifford algebra derivation of the characteristic hypersurfaces of Maxwell's equations". In Julian Ławrynowicz (ed.). Deformations of mathematical structures II. Springer. p. 131 ff. ISBN 0-7923-2576-1. Hence in 3D we associate the alternate terms of pseudovector for bivector, and pseudoscalar for the trivector
  6. ^ Baylis (1994). Theoretical methods in the physical sciences: an introduction to problem solving using Maple V. Birkhäuser. p. 234, see footnote. ISBN 0-8176-3715-X.

Developed by StudentB