Neuroinformatics

Neuroinformatics is the emergent field that combines informatics and neuroscience. Neuroinformatics is related with neuroscience data and information processing by artificial neural networks.[1] There are three main directions where neuroinformatics has to be applied:[2]

  • the development of computational models of the nervous system and neural processes;
  • the development of tools for analyzing and modeling neuroscience data; and
  • the development of tools and databases for management and sharing of neuroscience data at all levels of analysis.

Neuroinformatics encompasses philosophy (computational theory of mind), psychology (information processing theory), computer science (natural computing, bio-inspired computing), among others disciplines. Neuroinformatics doesn't deal with matter or energy,[3] so it can be seen as a branch of neurobiology that studies various aspects of nervous systems. The term neuroinformatics seems to be used synonymously with cognitive informatics, described by Journal of Biomedical Informatics as interdisciplinary domain that focuses on human information processing, mechanisms and processes within the context of computing and computing applications.[4] According to German National Library, neuroinformatics is synonymous with neurocomputing.[5] At Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing was introduced the following description: Cognitive Informatics (CI) as a transdisciplinary enquiry of computer science, information sciences, cognitive science, and intelligence science. CI investigates into the internal information processing mechanisms and processes of the brain and natural intelligence, as well as their engineering applications in cognitive computing.[6] According to INCF, neuroinformatics is a research field devoted to the development of neuroscience data and knowledge bases together with computational models.[7]

  1. ^ "Frontiers in Neuroinformatics". www.frontiersin.org.
  2. ^ "Working groups | INCF". www.incf.org.
  3. ^ Wang, Yingxu (2003-08-01). "On Cognitive Informatics". Brain and Mind. 4 (2): 151–167. doi:10.1023/A:1025401527570. ISSN 1573-3300. S2CID 61495426.
  4. ^ Patel, Vimla L.; Kannampallil, Thomas G. (2015-02-01). "Cognitive informatics in biomedicine and healthcare". Journal of Biomedical Informatics. 53: 3–14. doi:10.1016/j.jbi.2014.12.007. ISSN 1532-0464. PMID 25541081.
  5. ^ "Katalog der Deutschen Nationalbibliothek". portal.dnb.de. Retrieved 2020-12-12.
  6. ^ "Cognitive Informatics in Year 10 and Beyond: summary of the plenary panel". Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing.
  7. ^ "What is Neuroinformatics | INCF". www.incf.org.

Developed by StudentB