Neuroplasticity, also known as neural plasticity or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned.[1] These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Other forms of neuroplasticity include homologous area adaptation, cross modal reassignment, map expansion, and compensatory masquerade.[2] Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition,[3] environmental influences,[4] pregnancy,[5] caloric intake,[6] practice/training,[7] and psychological stress.[8]
Neuroplasticity was once thought by neuroscientists to manifest only during childhood,[9][10] but research in the latter half of the 20th century showed that many aspects of the brain can be altered (or are "plastic") even through adulthood.[11] However, the developing brain exhibits a higher degree of plasticity than the adult brain.[12]Activity-dependent plasticity can have significant implications for healthy development, learning, memory, and recovery from brain damage.[13][14][15]