Nihonium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /nɪˈhoʊniəm/ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mass number | [286] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nihonium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 113 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group | group 13 (boron group) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Period | period 7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block | p-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Rn] 5f14 6d10 7s2 7p1 (predicted)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 3 (predicted) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase at STP | solid (predicted)[1][2][3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 700 K (430 °C, 810 °F) (predicted)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 1430 K (1130 °C, 2070 °F) (predicted)[1][4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 16 g/cm3 (predicted)[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 7.61 kJ/mol (extrapolated)[3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporisation | 130 kJ/mol (predicted)[2][4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | common: (none) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionisation energies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 170 pm (predicted)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 172–180 pm (extrapolated)[3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | synthetic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp) (predicted)[5][6] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 54084-70-7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Naming | After Japan (Nihon in Japanese) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | Riken (Japan, first undisputed claim 2004) JINR (Russia) and Livermore (US, first announcement 2003) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotopes of nihonium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nihonium is a synthetic chemical element; it has the symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.
Nihonium was first reported to have been created in experiments carried out between 14 July and 10 August 2003, by a Russian–American collaboration at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, working in collaboration with the Lawrence Livermore National Laboratory in Livermore, California,[10] and on 23 July 2004, by a team of Japanese scientists at Riken in Wakō, Japan.[11] The confirmation of their claims in the ensuing years involved independent teams of scientists working in the United States, Germany, Sweden, and China, as well as the original claimants in Russia and Japan. In 2015, the IUPAC/IUPAP Joint Working Party recognised the element and assigned the priority of the discovery and naming rights for the element to Riken.[12] The Riken team suggested the name nihonium in 2016, which was approved in the same year. The name comes from the common Japanese name for Japan (日本, nihon).
Very little is known about nihonium, as it has been made only in very small amounts that decay within seconds. The anomalously long lives of some superheavy nuclides, including some nihonium isotopes, are explained by the "island of stability" theory. Experiments to date have supported the theory, with the half-lives of the confirmed nihonium isotopes increasing from milliseconds to seconds as neutrons are added and the island is approached. Nihonium has been calculated to have similar properties to its homologues boron, aluminium, gallium, indium, and thallium. All but boron are post-transition metals, and nihonium is expected to be a post-transition metal as well. It should also show several major differences from them; for example, nihonium should be more stable in the +1 oxidation state than the +3 state, like thallium, but in the +1 state nihonium should behave more like silver and astatine than thallium. Preliminary experiments in 2017 showed that elemental nihonium is not very volatile; its chemistry remains largely unexplored.