Noise (electronics)

Random fluctuations of voltage in pink noise

In electronics, noise is an unwanted disturbance in an electrical signal.[1]: 5 

Noise generated by electronic devices varies greatly as it is produced by several different effects.

In particular, noise is inherent in physics and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent.

Electronic noise is a common component of noise in signal processing.

In communication systems, noise is an error or undesired random disturbance of a useful information signal in a communication channel. The noise is a summation of unwanted or disturbing energy from natural and sometimes man-made sources. Noise is, however, typically distinguished from interference,[a] for example in the signal-to-noise ratio (SNR), signal-to-interference ratio (SIR) and signal-to-noise plus interference ratio (SNIR) measures. Noise is also typically distinguished from distortion, which is an unwanted systematic alteration of the signal waveform by the communication equipment, for example in signal-to-noise and distortion ratio (SINAD) and total harmonic distortion plus noise (THD+N) measures.

While noise is generally unwanted, it can serve a useful purpose in some applications, such as random number generation or dither.

Uncorrelated noise sources add according to the sum of their powers.[2]

  1. ^ Motchenbacher, C. D.; Connelly, J. A. (1993). Low-noise electronic system design. Wiley Interscience. ISBN 0-471-57742-1.
  2. ^ Sobering, Tim J. (1999). "Noise in Electronic Systems" (PDF). Archived (PDF) from the original on 2023-05-20. Retrieved 2024-04-07.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


Developed by StudentB