Normal matrix

In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A*:

The concept of normal matrices can be extended to normal operators on infinite-dimensional normed spaces and to normal elements in C*-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable to analysis.

The spectral theorem states that a matrix is normal if and only if it is unitarily similar to a diagonal matrix, and therefore any matrix A satisfying the equation A*A = AA* is diagonalizable. (The converse does not hold because diagonalizable matrices may have non-orthogonal eigenspaces.) Thus and where is a diagonal matrix whose diagonal values are in general complex.

The left and right singular vectors in the singular value decomposition of a normal matrix differ only in complex phase from each other and from the corresponding eigenvectors, since the phase must be factored out of the eigenvalues to form singular values.


Developed by StudentB