Optical conductivity

Optical conductivity is the property of a material which gives the relationship between the induced current density in the material and the magnitude of the inducing electric field for arbitrary frequencies.[1] This linear response function is a generalization of the electrical conductivity, which is usually considered in the static limit, i.e., for time-independent or slowly varying electric fields.

While the static electrical conductivity is vanishingly small in insulators (such as diamond or porcelain), the optical conductivity always remains finite in some frequency intervals (above the optical gap in the case of insulators). The total optical weight can be inferred from sum rules. The optical conductivity is closely related to the dielectric function, the generalization of the dielectric constant to arbitrary frequencies.

  1. ^ J. Robert Schrieffer; J.S. Brooks (2007). Handbook of High -Temperature Superconductivity: Theory and Experiment. Springer Publishing. p. 299. ISBN 9780387687346.

Developed by StudentB