Organic superconductor

An organic superconductor is a synthetic organic compound that exhibits superconductivity at low temperatures.

As of 2007 the highest achieved critical temperature for an organic superconductor at standard pressure is 33 K (−240 °C; −400 °F), observed in the alkali-doped fullerene RbCs2C60.[1][2]

In 1979 Klaus Bechgaard synthesized the first organic superconductor (TMTSF)2PF6 (the corresponding material class was named after him later) with a transition temperature of TC = 0.9 K, at an external pressure of 11 kbar.[3]

Many materials may be characterized as organic superconductors. These include the Bechgaard salts and Fabre salts which are both quasi-one-dimensional, and quasi-two-dimensional materials such as k-BEDT-TTF2X charge-transfer complex, λ-BETS2X compounds, graphite intercalation compounds and three-dimensional materials such as the alkali-doped fullerenes.

Organic superconductors are of special interest not only for scientists, looking for room-temperature superconductivity and for model systems explaining the origin of superconductivity but also for daily life issues as organic compounds are mainly built of carbon and hydrogen which belong to the most common elements on earth in contrast to copper or osmium.

  1. ^ Lebed, A. G. (Ed.) (2008). The Physics of Organic Superconductors and Conductors. Springer Series in Materials Science, Vol. 110. ISBN 978-3-540-76667-4
  2. ^ Singleton, John; Mielke, Charles (2002). "Quasi-two-dimensional organic superconductors: A review". Contemporary Physics. 43 (2): 63. arXiv:cond-mat/0202442. Bibcode:2002ConPh..43...63S. doi:10.1080/00107510110108681. S2CID 15343631.
  3. ^ Jérome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. (1980). "Superconductivity in a synthetic organic conductor (TMTSF)2PF 6". Journal de Physique Lettres. 41 (4): 95–98. doi:10.1051/jphyslet:0198000410409500.

Developed by StudentB