Particle aggregation

Particle agglomeration refers to the formation of assemblages in a suspension and represents a mechanism leading to the functional destabilization of colloidal systems. During this process, particles dispersed in the liquid phase stick to each other, and spontaneously form irregular particle assemblages, flocs, or agglomerates. This phenomenon is also referred to as coagulation or flocculation and such a suspension is also called unstable. Particle agglomeration can be induced by adding salts or other chemicals referred to as coagulant or flocculant.[1]

Scheme of particle agglomeration. Particles are dispersed individually in a functionally stable suspension, while they agglomerate in a functionally unstable suspension. As agglomeration proceed from early to later states, the agglomerates grow in size, and may eventually gel.

Particle agglomeration can be a reversible or irreversible process. Particle agglomerates defined as "hard agglomerates" are more difficult to redisperse to the initial single particles. In the course of agglomeration, the agglomerates will grow in size, and as a consequence they may settle to the bottom of the container, which is referred to as sedimentation. Alternatively, a colloidal gel may form in concentrated suspensions which changes its rheological properties. The reverse process whereby particle agglomerates are re-dispersed as individual particles, referred to as peptization, hardly occurs spontaneously, but may occur under stirring or shear.

Colloidal particles may also remain dispersed in liquids for long periods of time (days to years). This phenomenon is referred to as colloidal stability and such a suspension is said to be functionally stable. Stable suspensions are often obtained at low salt concentrations or by addition of chemicals referred to as stabilizers or stabilizing agents. The stability of particles, colloidal or otherwise, is most commonly evaluated in terms of zeta potential. This parameter provides a readily quantifiable measure of interparticle repulsion, which is the key inhibitor of particle aggregation.

Similar agglomeration processes occur in other dispersed systems too. In emulsions, they may also be coupled to droplet coalescence, and not only lead to sedimentation but also to creaming. In aerosols, airborne particles may equally aggregate and form larger clusters (e.g., soot).

  1. ^ M. Elimelech, J. Gregory, X. Jia, R. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Butterworth-Heinemann, 1998.

Developed by StudentB