In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem, Latin for mystical hexagram) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon (extended if necessary) meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.
The theorem is also valid in the Euclidean plane, but the statement needs to be adjusted to deal with the special cases when opposite sides are parallel.
This theorem is a generalization of Pappus's (hexagon) theorem, which is the special case of a degenerate conic of two lines with three points on each line.