Plant communication

Plants are exposed to many stress factors such as disease, temperature changes, herbivory, injury and more.[1] Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future. Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes,[2] other plants[3] (of the same or other species), animals,[4] insects,[5] and fungi.[6] Plants communicate through a host of volatile organic compounds (VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: fatty acid derivatives, phenylpropanoids/benzenoids, amino acid derivatives, and terpenoids.[7] Due to the physical/chemical constraints most VOCs are of low molecular mass (< 300 Da), are hydrophobic, and have high vapor pressures.[8] The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific herbivore to reduce mechanical damage inflicted on the plant [5] to the induction of chemical defenses of a neighboring plant before it is being attacked.[9] In addition, the host of VOCs emitted varies from plant to plant, where for example, the Venus Fly Trap can emit VOCs to specifically target and attract starved prey.[10] While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to "eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate.[11] As related to the aspect of meaning-making, the field is also identified as phytosemiotics.[12]

  1. ^ Bonato, B.; Peressotti, F.; Guerra, S.; Wang, Q.; & Umberto Castiello, U. (2021) “Cracking the code: a comparative approach to plant communication”. Communicative & Integrative Biology. 14(1): 176-185. doi: 10.1080/19420889.2021.1956719. PMID 34434483; PMC PMC8381849.
  2. ^ Wenke, Katrin; Kai, Marco; Piechulla, Birgit (2010-02-01). "Belowground volatiles facilitate interactions between plant roots and soil organisms". Planta. 231 (3): 499–506. Bibcode:2010Plant.231..499W. doi:10.1007/s00425-009-1076-2. PMID 20012987. S2CID 1409780.
  3. ^ Yoneya, Kinuyo; Takabayashi, Junji (2014-01-01). "Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives". Plant Biotechnology. 31 (5): 409–416. doi:10.5511/plantbiotechnology.14.0827a.
  4. ^ Leonard, Anne S.; Francis, Jacob S. (2017-04-01). "Plant–animal communication: past, present and future". Evolutionary Ecology. 31 (2): 143–151. Bibcode:2017EvEco..31..143L. doi:10.1007/s10682-017-9884-5. S2CID 9578593.
  5. ^ a b De Moraes, C. M.; Lewis, W. J.; Paré, P. W.; Alborn, H. T.; Tumlinson, J. H. (1998). "Herbivore-infested plants selectively attract parasitoids". Nature. 393 (6685): 570–573. Bibcode:1998Natur.393..570D. doi:10.1038/31219. S2CID 4346152.
  6. ^ Bonfante, Paola; Genre, Andrea (2015). "Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?". Trends in Plant Science. 20 (3): 150–154. Bibcode:2015TPS....20..150B. doi:10.1016/j.tplants.2014.12.002. hdl:2318/158569. PMID 25583176.
  7. ^ Dudareva, Natalia (April 2013). "Biosynthesis, function and metabolic engineering of plant volatile organic compounds". New Phytologist. 198 (1): 16–32. doi:10.1111/nph.12145. JSTOR newphytologist.198.1.16. PMID 23383981. S2CID 26160875.
  8. ^ Rohrbeck, D.; Buss, D.; Effmert, U.; Piechulla, B. (2006-09-01). "Localization of Methyl Benzoate Synthesis and Emission in Stephanotis floribunda and Nicotiana suaveolens Flowers". Plant Biology. 8 (5): 615–626. Bibcode:2006PlBio...8..615R. doi:10.1055/s-2006-924076. PMID 16755462. S2CID 40502773.
  9. ^ Baldwin, Jan T.; Schultz, Jack C. (1983). "Rapid Changes in Tree Leaf Chemistry Induced by Damage: Evidence for Communication between Plants". Science. 221 (4607): 277–279. Bibcode:1983Sci...221..277B. doi:10.1126/science.221.4607.277. JSTOR 1691120. PMID 17815197. S2CID 31818182.
  10. ^ Hedrich, Rainer; Neher, Erwin (March 2018). "Venus Flytrap: How an Excitable, Carnivorous Plant Works" (PDF). Trends in Plant Science. 23 (3): 220–234. Bibcode:2018TPS....23..220H. doi:10.1016/j.tplants.2017.12.004. ISSN 1360-1385. PMID 29336976.
  11. ^ Heil, Martin; Karban, Richard (2010-03-01). "Explaining evolution of plant communication by airborne signals". Trends in Ecology & Evolution. 25 (3): 137–144. Bibcode:2010TEcoE..25..137H. doi:10.1016/j.tree.2009.09.010. ISSN 0169-5347. PMID 19837476.
  12. ^ Kull, Kalevi 2000. An introduction to phytosemiotics: Semiotic botany and vegetative sign systems. Sign Systems Studies 28: 326–350.

Developed by StudentB