Polymorphic code

In computing, polymorphic code is code that uses a polymorphic engine to mutate while keeping the original algorithm intact - that is, the code changes itself every time it runs, but the function of the code (its semantics) stays the same. For example, the simple math expressions 3+1 and 6-2 both achieve the same result, yet run with different machine code in a CPU. This technique is sometimes used by computer viruses, shellcodes and computer worms to hide their presence.[1]

Encryption is the most common method to hide code. With encryption, the main body of the code (also called its payload) is encrypted and will appear meaningless. For the code to function as before, a decryption function is added to the code. When the code is executed, this function reads the payload and decrypts it before executing it in turn.

Encryption alone is not polymorphism. To gain polymorphic behavior, the encryptor/decryptor pair is mutated with each copy of the code. This allows different versions of some code which all function the same.[2]

  1. ^ Raghunathan, Srinivasan (2007). Protecting anti-virus software under viral attacks (M.Sc.). Arizona State University. CiteSeerX 10.1.1.93.796.
  2. ^ Wong, Wing; Stamp, M. (2006). "Hunting for Metamorphic Engines". Journal in Computer Virology. 2 (3): 211–229. CiteSeerX 10.1.1.108.3878. doi:10.1007/s11416-006-0028-7. S2CID 8116065.

Developed by StudentB