Polynomial regression

A cubic polynomial regression fit to a simulated data set. The confidence band is a 95% simultaneous confidence band constructed using the Scheffé approach.

In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x). Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.[1]

The explanatory (independent) variables resulting from the polynomial expansion of the "baseline" variables are known as higher-degree terms. Such variables are also used in classification settings.[2]

  1. ^ "Implementation of Polynomial Regression". GeeksforGeeks. 2018-10-03. Retrieved 2024-08-25.
  2. ^ Yin-Wen Chang; Cho-Jui Hsieh; Kai-Wei Chang; Michael Ringgaard; Chih-Jen Lin (2010). "Training and testing low-degree polynomial data mappings via linear SVM". Journal of Machine Learning Research. 11: 1471–1490.

Developed by StudentB