Polyvinyl chloride

Polyvinyl chloride
Repeating unit of PVC polymer chain.
Space-filling model of a part of a PVC chain

Pure PVC powder, containing no plasticizer
Names
IUPAC name
poly(1-chloroethylene)[1]
Other names
Polychloroethene
Identifiers
Abbreviations PVC
ChEBI
ChemSpider
  • none
ECHA InfoCard 100.120.191 Edit this at Wikidata
KEGG
MeSH Polyvinyl+Chloride
Properties
(C2H3Cl)n[2]
Appearance white, brittle solid
Odor odorless
Density 1.4 g/cm3
insoluble
Solubility in ethanol insoluble
Solubility in tetrahydrofuran slightly soluble
−10.71×10−6 (SI, 22 °C)[3]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
10 mg/m3 (inhalable), 3 mg/m3 (respirable) (TWA)
NIOSH (US health exposure limits):[4]
PEL (Permissible)
15 mg/m3 (inhalable), 5 mg/m3 (respirable) (TWA)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Mechanical properties
Elongation at break 20–40%
Notch test 2–5 kJ/m2
Glass Transition Temperature 82 °C (180 °F)[5]
Melting point 100 °C (212 °F) to 260 °C (500 °F)[5]
Effective heat of combustion 17.95 MJ/kg
Specific heat (c) 0.9 kJ/(kg·K)
Water absorption (ASTM) 0.04–0.4
Dielectric Breakdown Voltage 40 MV/m

Polyvinyl chloride (alternatively: poly(vinyl chloride),[6][7] colloquial: vinyl[8] or polyvinyl; abbreviated: PVC[8]) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of PVC are produced each year.[9]

PVC comes in rigid (sometimes abbreviated as RPVC) and flexible forms. Rigid PVC is used in construction for pipes, doors and windows. It is also used in making plastic bottles, packaging, and bank or membership cards. Adding plasticizers makes PVC softer and more flexible. It is used in plumbing, electrical cable insulation, flooring, signage, phonograph records, inflatable products, and in rubber substitutes.[10] With cotton or linen, it is used in the production of canvas.

Polyvinyl chloride is a white, brittle solid. It is soluble in ketones, chlorinated solvents, Dimethylformamide, THF and DMAc[11] .

  1. ^ "poly(vinyl chloride) (CHEBI:53243)". CHEBI. Archived from the original on 13 December 2013. Retrieved 12 July 2012.
  2. ^ "Substance Details CAS Registry Number: 9002-86-2". Commonchemistry. CAS. Archived from the original on 21 May 2018. Retrieved 12 July 2012.
  3. ^ Wapler, M. C.; Leupold, J.; Dragonu, I.; von Elverfeldt, D.; Zaitsev, M.; Wallrabe, U. (2014). "Magnetic properties of materials for MR engineering, micro-MR and beyond". JMR. 242: 233–242. arXiv:1403.4760. Bibcode:2014JMagR.242..233W. doi:10.1016/j.jmr.2014.02.005. PMID 24705364. S2CID 11545416.
  4. ^ "Material Safety Data Sheet: PVC Compounds Pellet and Powder" (PDF). Georgia Gulf Chemical and Vinyls LLC. Archived (PDF) from the original on 17 August 2021. Retrieved 23 July 2021.
  5. ^ a b Wilkes, Charles E.; Summers, James W.; Daniels, Charles Anthony; Berard, Mark T. (2005). PVC Handbook. Hanser Verlag. p. 414. ISBN 978-1-56990-379-7. Archived from the original on 17 November 2016. Retrieved 24 September 2016.
  6. ^ "Poly(vinyl chloride)". MilliporeSigma. 2022. Archived from the original on 11 October 2022. Retrieved 11 October 2022.
  7. ^ "Poly(Vinyl Chloride)".
  8. ^ a b "About PVC". The European Council of Vinyl Manufacturers. Archived from the original on 5 December 2023. Retrieved 17 March 2024.
  9. ^ Cite error: The named reference ullmannPVC was invoked but never defined (see the help page).
  10. ^ W. V. Titow (31 December 1984). PVC technology. Springer. pp. 6–. ISBN 978-0-85334-249-6. Archived from the original on 26 May 2013. Retrieved 6 October 2011.
  11. ^ Grause, Guido; Hirahashi, Suguru; Toyoda, Hiroshi; Kameda, Tomohito; Yoshioka, Toshiaki (2017). "Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers". Journal of Material Cycles and Waste Management. 19: 612–622. doi:10.1007/s10163-015-0457-9.

Developed by StudentB