Praseodymium

Praseodymium, 59Pr
Praseodymium
Pronunciation/ˌprzəˈdɪmiəm/[1] (PRAY-zee-ə-DIM-ee-əm)
Appearancegrayish white
Standard atomic weight Ar°(Pr)
Praseodymium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Pr

Pa
ceriumpraseodymiumneodymium
Atomic number (Z)59
Groupf-block groups (no number)
Periodperiod 6
Block  f-block
Electron configuration[Xe] 4f3 6s2
Electrons per shell2, 8, 18, 21, 8, 2
Physical properties
Phase at STPsolid
Melting point1204 K ​(931 °C, ​1708 °F)[4]
Boiling point3403 K ​(3130 °C, ​5666 °F)
Density (at 20° C)6.773 g/cm3[4]
when liquid (at m.p.)6.50 g/cm3
Heat of fusion6.89 kJ/mol
Heat of vaporization331 kJ/mol
Molar heat capacity27.20 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1771 1973 (2227) (2571) (3054) (3779)
Atomic properties
Oxidation statescommon: +3
0,[5] +1,[6] +2,? +4,? +5
ElectronegativityPauling scale: 1.13
Ionization energies
  • 1st: 527 kJ/mol
  • 2nd: 1020 kJ/mol
  • 3rd: 2086 kJ/mol
Atomic radiusempirical: 182 pm
Covalent radius203±7 pm
Color lines in a spectral range
Spectral lines of praseodymium
Other properties
Natural occurrenceprimordial
Crystal structuredouble hexagonal close-packed (dhcp) (hP4)
Lattice constants
Double hexagonal close packed crystal structure for praseodymium
a = 0.36723 nm
c = 1.18328 nm (at 20 °C)[4]
Thermal expansion4.5×10−6/K (at 20 °C)[4][a]
Thermal conductivity12.5 W/(m⋅K)
Electrical resistivitypoly: 0.700 µΩ⋅m (at r.t.)
Magnetic orderingparamagnetic[7]
Molar magnetic susceptibility+5010.0×10−6 cm3/mol (293 K)[8]
Young's modulus37.3 GPa
Shear modulus14.8 GPa
Bulk modulus28.8 GPa
Speed of sound thin rod2280 m/s (at 20 °C)
Poisson ratio0.281
Vickers hardness250–745 MPa
Brinell hardness250–640 MPa
CAS Number7440-10-0
History
DiscoveryCarl Auer von Welsbach (1885)
Isotopes of praseodymium
Main isotopes[9] Decay
abun­dance half-life (t1/2) mode pro­duct
141Pr 100% stable
142Pr synth 19.12 h β 142Nd
ε 142Ce
143Pr synth 13.57 d β 143Nd
 Category: Praseodymium
| references

Praseodymium is a chemical element; it has symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

Praseodymium always occurs naturally together with the other rare-earth metals. It is the sixth-most abundant rare-earth element and fourth-most abundant lanthanide, making up 9.1 parts per million of the Earth's crust, an abundance similar to that of boron. In 1841, Swedish chemist Carl Gustav Mosander extracted a rare-earth oxide residue he called didymium from a residue he called "lanthana", in turn separated from cerium salts. In 1885, the Austrian chemist Carl Auer von Welsbach separated didymium into two elements that gave salts of different colours, which he named praseodymium and neodymium. The name praseodymium comes from the Ancient Greek πράσινος (prasinos), meaning 'leek-green', and δίδυμος (didymos) 'twin'.

Like most rare-earth elements, praseodymium most readily forms the +3 oxidation state, which is the only stable state in aqueous solution, although the +4 oxidation state is known in some solid compounds and, uniquely among the lanthanides, the +5 oxidation state is attainable in matrix-isolation conditions. The 0, +1, and +2 oxidation states are rarely found. Aqueous praseodymium ions are yellowish-green, and similarly, praseodymium results in various shades of yellow-green when incorporated into glasses. Many of praseodymium's industrial uses involve its ability to filter yellow light from light sources.

  1. ^ "praseodymium". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ "Standard Atomic Weights: Praseodymium". CIAAW. 2017.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ a b c d Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  5. ^ Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (15 December 2003). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  6. ^ Chen, Xin; et al. (13 December 2019). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295. S2CID 56148031.
  7. ^ Jackson, M. (2000). "Magnetism of Rare Earth" (PDF). The IRM quarterly. 10 (3): 1.
  8. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  9. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


Developed by StudentB