Proton decay

The pattern of weak isospins, weak hypercharges, and color charges for particles in the Georgi–Glashow model. Here, a proton, consisting of two up quarks and a down, decays into a pion, consisting of an up and anti-up, and a positron, via an X boson with electric charge −4/3e.

In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron.[1] The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×1034 years.[2]

According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see Chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

Some beyond-the-Standard-Model grand unified theories (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the Higgs particle, magnetic monopoles, or new X bosons with a half-life of 1031 to 1036 years. For comparison, the universe is roughly 1.38×1010 years old.[3] To date, all attempts to observe new phenomena predicted by GUTs (like proton decay or the existence of magnetic monopoles) have failed.

Quantum tunnelling may be one of the mechanisms of proton decay.[4][5][6]

Quantum gravity[7] (via virtual black holes and Hawking radiation) may also provide a venue of proton decay at magnitudes or lifetimes well beyond the GUT scale decay range above, as well as extra dimensions in supersymmetry.[8][9][10][11]

There are theoretical methods of baryon violation other than proton decay including interactions with changes of baryon and/or lepton number other than 1 (as required in proton decay). These included B and/or L violations of 2, 3, or other numbers, or B − L violation. Such examples include neutron oscillations and the electroweak sphaleron anomaly at high energies and temperatures that can result between the collision of protons into antileptons[12] or vice versa (a key factor in leptogenesis and non-GUT baryogenesis).

  1. ^ Ahmad, Ishfaq (1969), "Radioactive decays by Protons. Myth or reality?", The Nucleus, pp. 69–70
  2. ^ Bajc, Borut; Hisano, Junji; Kuwahara, Takumi; Omura, Yuji (2016). "Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5) GUTs". Nuclear Physics B. 910: 1. arXiv:1603.03568. Bibcode:2016NuPhB.910....1B. doi:10.1016/j.nuclphysb.2016.06.017. S2CID 119212168.
  3. ^ Francis, Matthew R. (22 September 2015). "Do protons decay?". symmetry magazine. Retrieved 2020-11-12.
  4. ^ Talou, P.; Carjan, N.; Strottman, D. (1998). "Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei". Physical Review C. 58 (6): 3280–3285. arXiv:nucl-th/9809006. Bibcode:1998PhRvC..58.3280T. doi:10.1103/PhysRevC.58.3280. S2CID 119075457.
  5. ^ Dicus, D. A.; Letaw, J. R.; Teplitz, D. C.; Teplitz, V. L. (January 1982). "Effects of proton decay on the cosmological future". The Astrophysical Journal. 252: 1. Bibcode:1982ApJ...252....1D. doi:10.1086/159528. ISSN 0004-637X.
  6. ^ Trixler, F. (2013). "Quantum Tunnelling to the Origin and Evolution of Life". Current Organic Chemistry. 17 (16): 1758–1770. doi:10.2174/13852728113179990083. PMC 3768233. PMID 24039543.
  7. ^ Bambi, Cosimo; Freese, Katherine (2008). "Dangerous implications of a minimum length in quantum gravity". Classical and Quantum Gravity. 25 (19): 195013. arXiv:0803.0749. Bibcode:2008CQGra..25s5013B. doi:10.1088/0264-9381/25/19/195013. hdl:2027.42/64158. S2CID 2040645.
  8. ^ Adams, Fred C.; Kane, Gordon L.; Mbonye, Manasse; Perry, Malcolm J. (2001). "Proton Decay, Black Holes, and Large Extra Dimensions - NASA/ADS". International Journal of Modern Physics A. 16 (13): 2399–2410. arXiv:hep-ph/0009154. Bibcode:2001IJMPA..16.2399A. doi:10.1142/S0217751X0100369X. S2CID 14989175.
  9. ^ Al-Modlej, Abeer; Alsaleh, Salwa; Alshal, Hassan; Ali, Ahmed Farag (2019). "Proton decay and the quantum structure of space–time". Canadian Journal of Physics. 97 (12): 1317–1322. arXiv:1903.02940. Bibcode:2019CaJPh..97.1317A. doi:10.1139/cjp-2018-0423. hdl:1807/96892. S2CID 119507878.
  10. ^ Giddings, Steven B. (1995). "The black hole information paradox". arXiv:hep-th/9508151.
  11. ^ Alsaleh, Salwa; Al-Modlej, Abeer; Farag Ali, Ahmed (2017). "Virtual black holes from the generalized uncertainty principle and proton decay". Europhysics Letters. 118 (5): 50008. arXiv:1703.10038. Bibcode:2017EL....11850008A. doi:10.1209/0295-5075/118/50008. S2CID 119369813.
  12. ^ Tye, S.-H. Henry; Wong, Sam S. C. (2015). "Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes". Physical Review D. 92 (4): 045005. arXiv:1505.03690. Bibcode:2015PhRvD..92d5005T. doi:10.1103/PhysRevD.92.045005. S2CID 73528684.

Developed by StudentB