Quantum logic

In the mathematical study of logic and the physical analysis of quantum foundations, quantum logic is a set of rules for manip­ulation of propositions inspired by the structure of quantum theory. The formal system takes as its starting point an obs­ervation of Garrett Birkhoff and John von Neumann, that the structure of experimental tests in classical mechanics forms a Boolean algebra, but the structure of experimental tests in quantum mechanics forms a much more complicated structure.

A number of other logics have also been proposed to analyze quantum-mechanical phenomena, unfortunately also under the name of "quantum logic(s)". They are not the subject of this article. For discussion of the similarities and differences between quantum logic and some of these competitors, see § Relationship to other logics.

Quantum logic has been proposed as the correct logic for propositional inference generally, most notably by the philosopher Hilary Putnam, at least at one point in his career. This thesis was an important ingredient in Putnam's 1968 paper "Is Logic Empirical?" in which he analysed the epistemological status of the rules of propositional logic. Modern philosophers reject quantum logic as a basis for reasoning, because it lacks a material conditional; a common alternative is the system of linear logic, of which quantum logic is a fragment.

Mathematically, quantum logic is formulated by weakening the distributive law for a Boolean algebra, resulting in an ortho­complemented lattice. Quantum-mechanical observables and states can be defined in terms of functions on or to the lattice, giving an alternate formalism for quantum computations.


Developed by StudentB